CODDY - International Coding and Design School for Teens and Kids

Olympiad programming for students Course. Module 1

Learning goals are to develop algorithmic thinking, logic, and acquire skills in solving Olympiad problems using Python programming.

f

Day one	Variables and operators in Python
	 Introduction to Python: getting to know the language, its features and advantages in competitive programming; Getting to know the VSCode development environment; Basic concepts: data types, variables, constants, operations.
	Lesson result: got a basic understanding of the Python language. Practical task: solve the problem of finding the sum of two numbers A and B.
Day two	Conditional operators: if, else. Working with input and output
	- Input/output in Olympiad problems; - Comparison operators; - Conditional operator if.
	Lesson result: learned how to use the conditional operator to solve Olympiad problems. Practical task: solve problems using the conditional operator.
Day three	For and while loops
	- For loops and the concept of range; - While loop and working with counters; - Multiple input.
	Lesson outcomes: studied the concepts of for and while loops, learned to understand which loop is best to use to solve a specific problem. Practical task: solve problems using for and while loops.
Day four	Selection of tasks (contest) for the module
	- Tournament on the material covered; - Analysis and explanation of the tournament tasks.
	Lesson outcome: knowledge of the main language structures was checked, gaps in knowledge were identified and eliminated. Practical task: solve tournament tasks, complete the remaining or additional tasks.

CODDY - International Coding and Design School for Teens and Kids

f

CODD

Olympiad programming for students Course. Module 2

Learning goals are to develop algorithmic thinking, logic, and acquire skills in solving Olympiad problems using Python programming.

Day one	Lists in Python
	- The concept of an array; - Explanation of how static and dynamic arrays work; - The importance of an array as a basic data structure.
	Lesson outcome: learned what an array is and its necessity in solving Olympiad problems. Practical task: solve problems that use an array.
Day two	Functions in Python
	- Concept of functions in programming; - Working with functions, function arguments; - Working with built-in libraries.
	Lesson outcome: studied the concept of functions and learned how to work with them. Practical task: solve problems using built-in and native functions.
Day three	Working with strings in Python
	- The concept of a string; - Basic functions for working with strings; - Formatted output.
	Lesson outcome: learned how to work with strings and output the answer in the required format.
	Practical task: solve problems using strings.
Day four	Selection of tasks (contest) for the module
	- Tournament on all topics covered; - Analysis of tasks.
	Result of the lesson: knowledge of language syntax was checked and errors were corrected. Practical task: solve tournament tasks, complete the remaining exercises.

CODDY - International Coding and Design School for Teens and Kids

f

Olympiad programming for students Course. Module 3

Learning goals are to develop algorithmic thinking, logic, and acquire skills in solving Olympiad problems using Python programming.

Course Syllabus:

Day one Asymptotics of solutions. Big O notation - Analysis of program performance; - Big O notation; - Analysis of problem constraints. Lesson outcome: learned what asymptotics is and how to evaluate it, learned how to select an algorithm that fits the problem constraints. Practical task: evaluate asymptotics and select the necessary algorithm for solving problems. Arithmetic Day two - Basic number theory; - The concept of parity; - The concept of divisibility, remainders from division. Lesson outcome: we understood how to see and solve problems on basic number theory. Practical task: solve problems on the topic of arithmetic. **Day three** Sorting - Why sort an array; - Basic sorting (BubbleSort, MergeSort, QuickSort); - Working with built-in sorting. Lesson outcome: studied basic and built-in sorting algorithms. Practical task: solve sorting problems. **Day four** A selection of tasks (contest) on the basics of algorithms - Virtual tournament on the topics covered; - Analysis and solution of problems. Lesson outcome: knowledge of the topics covered was checked. Practical task: solve tournament problems, complete the remaining problems.

CODDY - International Coding and Design School for Teens and Kids

f

Olympiad programming for students Course. Module 4

Learning goals are to develop algorithmic thinking, logic, and acquire skills in solving Olympiad problems using Python programming.

Day one	Search algorithms
	- Linear search; - Binary search; - Binary search by answer.
	Lesson outcome: studied the concept of binary search and learned to see it in problems. Practical task: solve problems on binary search and binary search by answer.
Day two	Recursion
	- The concept of recursion; - Examples of recursive approaches: factorial and Fibonacci numbers; - Recursive algorithms.
	Lesson outcome: studied the concept of recursion, learned to solve basic problems on recursion. Practical task: solve problems on the topic of recursion.
Day three	Sets and Dictionaries
	- Concepts of a set and a dictionary; - Studying the principles of a dictionary and a set; - Using a dictionary and a set to solve problems.
	Lesson outcome: studied the concept of a set and a dictionary, understood how and when they should be used to solve problems. Practical task: solve problems on the topic of sets and dictionaries.
Day four	A selection of tasks (contest) on basic data structures and algorithms
	- Virtual tournament on the topics covered; - Analysis of unsolved problems.
	Lesson outcome: knowledge of the material covered was tested. Practical task: solve tournament problems, analyze and complete unsolved problems.

CODDY - International Coding and Design School for Teens and Kids

f

Olympiad programming for students Course. Module 5

Learning goals are to develop algorithmic thinking, logic, and acquire skills in solving Olympiad problems using Python programming.

Day one	Greedy algorithms
	 Problems with choosing a locally optimal solution. Basics of greedy approaches; Examples of problems on minimization and maximization.
	Lesson outcome: studied the concept and examples of greedy algorithms and learned how to apply them. Practical task: solve problems using greedy approaches.
Day two	Number Theory
	- Prime numbers; - Least common divisor (GCD), Least common multiple (LCM); - Euclidean Algorithm; - Extended Euclidean Algorithm.
	Lesson outcome: learned the concept of GCD and LCM and learned how to find them quickly. Practical task: solve problems in number theory.
Day three	Introduction to the Olympiad movement. Analysis of Olympiad problems
	- How and when to participate in Olympiads? How to prepare and perform well? - Analysis of VSOSh/MOSh problems; - Explanation of the testing system.
	Lesson outcome: familiarized ourselves with the options of real Olympiad problems and understood the nuances of the testing system. Practical task: to solve the Olympiad problems.
Day four	A selection of tasks (contest) on advanced algorithms
	- Virtual tournament on the topics covered; - Analysis of unsolved problems.
	Lesson outcome: knowledge of the material covered was tested. Practical task: solve tournament problems, analyze and complete unsolved problems.

CODDY - International Coding and Design School for Teens and Kids

f

Olympiad programming for students Course. Module 6

Learning goals are to develop algorithmic thinking, logic, and acquire skills in solving Olympiad problems using Python programming.

Day one	Stack, queue, deque
	- The concept of a stack, queue and deque; - The difference in approaches to choosing a data structure; - Why you can't use deque everywhere.
	Lesson result: learned what a stack, queue and deque are, their differences, learned how to use these structures. Practical task: solve problems using the studied data structures.
Day two	Combinatorics
	- Permutations and combinations; - Pascal's triangle; - Sieve of Eratosthenes.
	Lesson outcome: got acquainted with basic combinatorics and delved into number theory. Practical task: solve problems in combinatorics.
Day three	Dynamic programming: basics
	- Basics of dynamic programming; - Dynamic programming problems (Fibonacci numbers, factorial); - Dynamic approaches.
	Lesson outcome: learned what dynamic programming is and why it is important. Practical task: solve problems using dynamic approaches.
Day four	Selection of tasks (contest) for the module
	- Virtual tournament on the topics covered; - Analysis of tasks.
	Lesson outcome: knowledge of the material covered was tested. Practical task: solve tournament tasks, analyze and complete unsolved tasks.

CODDY - International Coding and Design School for Teens and Kids

f

Olympiad programming for students Course. Module 7

Learning goals are to develop algorithmic thinking, logic, and acquire skills in solving Olympiad problems using Python programming.

Day one	Graph Theory
	- What is a graph; - Types and properties of graphs; - Matrix and adjacency list.
	Lesson outcome: got acquainted with the concept of a graph and ways of its representation in a program. Practical task: solve simple problems on graphs.
Day two	Depth-First Search (DFS)
	- Why do we need DFS?; - How DFS works; - DFS modifications.
	Lesson outcome: we learned what DFS is, why we need it, learned how to use it and its modifications when solving Olympiad problems. Practical task: solve depth-first search problems.
Day three	Breadth-First Search (BFS) Algorithm
	- BFS operating principles; - Differences between DFS and BFS approaches; - BFS modifications.
	Lesson outcome: familiarized with the BFS algorithm, learned how to use it and its modifications when solving Olympiad problems. Practical task: solve breadth-first search problems.
Day four	Selection of tasks (contest) by graphs
	- Virtual tournament on the topics covered; - Analysis of tasks.
	Lesson outcome: knowledge of the material covered was tested. Practical task: solve tournament tasks, analyze and complete unsolved tasks.

CODDY - International Coding and Design School for Teens and Kids

f

Olympiad programming for students Course. Module 8

Learning goals are to develop algorithmic thinking, logic, and acquire skills in solving Olympiad problems using Python programming.

Day one	Analysis of international olympiads (IOI, ICPC)
	- Analysis of IOI/ICPC variants; - Analysis of complex problems from competitions; - Analysis of non-standard solutions.
	Lesson outcome: got acquainted with the problems of international olympiads and trained the ability to find non-trivial solutions. Practical task: solve problems from olympiads.
Day two	Two pointers and solution optimization
	- Two pointer method; - Advantages of the two pointer method over greedy approaches; - Solution optimization techniques.
	Lesson outcome: studied solution optimization methods and the two pointer method, saw the advantage of the method over greedy algorithms. Practical task: solve problems with two pointers.
Day three	Geometry
	- Distance calculation; - ScanLine algorithm; - Other geometric problems.
	Lesson outcome: learned about the scanning line method and learned to use school knowledge of geometry in programming. Practical task: solve geometric problems.
Day four	Final tournament
	- Final virtual tournament; - Analysis of tasks; - Summing up.
	Result of the lesson: checked knowledge of the material covered, summed up the course, received recommendations on further steps in preparing for the Olympiads. Practical task: prepare for the Olympiads and solve tasks.