

The Object-Oriented
Thought Process

Third Edition

informit.com/devlibrary

Developer’s
Library

ESSENTIAL REFERENCES FOR PROGRAMMING PROFESSIONALS

Developer’s Library books are designed to provide practicing programmers with
unique, high-quality references and tutorials on the programming languages and
technologies they use in their daily work.

All books in the Developer’s Library are written by expert technology practitioners
who are especially skilled at organizing and presenting information in a way that’s
useful for other programmers.

Key titles include some of the best, most widely acclaimed books within their
topic areas:

PHP & MySQL Web Development
Luke Welling & Laura Thomson
ISBN 978-0-672-32916-6

MySQL
Paul DuBois
ISBN-13: 978-0-672-32938-8

Linux Kernel Development
Robert Love
ISBN-13: 978-0-672-32946-3

Python Essential Reference
David Beazley
ISBN-13: 978-0-672-32862-6

Programming in Objective-C
Stephen G. Kochan
ISBN-13: 978-0-321-56615-7

PostgreSQL
Korry Douglas
ISBN-13: 978-0-672-33015-5

Developer’s Library books are available at most retail and online bookstores, as well
as by subscription from Safari Books Online at safari.informit.com

Developer’s Library

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

The Object-Oriented
Thought Process

Third Edition

Matt Weisfeld

The Object-Oriented Thought Process, Third Edition
Copyright © 2009 by Pearson Education

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect to
the use of the information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of the informa-
tion contained herein.

ISBN-10: 0-672-33016-4

ISBN-13: 978-0-672-33016-2

Library of Congress Cataloging-in-Publication Data

Weisfeld, Matt A.

The object-oriented thought process / Matt Weisfeld. -- 3rd ed.

p. cm.

Includes index.

ISBN 978-0-672-33016-2 (pbk.)

1. Object-oriented programming (Computer science) I. Title.

QA76.64.W436 2009

005.1'17--dc22

2008027242

Printed in the United States of America

First Printing: August 2008

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this infor-
mation. Use of a term in this book should not be regarded as affecting the validity of any
trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this book or
from the use of the programs accompanying it.

Bulk Sales
Pearson offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Acquisitions Editor
Mark Taber

Development
Editor
Songlin Qiu

Managing Editor
Patrick Kanouse

Project Editor
Seth Kerney

Copy Editor
Chrissy White

Indexer
Tim Wright

Proofreader
Matt Purcell

Technical Editor
Jon Upchurch

Publishing
Coordinator
Vanessa Evans

Book Designer
Gary Adair

Composition
Mark Shirar

vContents

Contents at a Glance
Introduction 1

1 Introduction to Object-Oriented Concepts 5

2 How to Think in Terms of Objects 37

3 Advanced Object-Oriented Concepts 53

4 The Anatomy of a Class 75

5 Class Design Guidelines 87

6 Designing with Objects 103

7 Mastering Inheritance and Composition 129

8 Frameworks and Reuse: Designing with Interfaces
and Abstract Classes 151

9 Building Objects 179

10 Creating Object Models with UML 193

11 Objects and Portable Data: XML 207

12 Persistent Objects: Serialization and Relational
Databases 225

13 Objects and the Internet 247

14 Objects and Client/Server Applications 271

15 Design Patterns 287

Index 309

Table of Contents
Introduction 1

1 Introduction to Object-Oriented Concepts 5
Procedural Versus OO Programming 6

Moving from Procedural to Object-Oriented Development 9

Procedural Programming 9

OO Programming 10

What Exactly Is an Object? 10

Object Data 10

Object Behaviors 11

What Exactly Is a Class? 14

Classes Are Object Templates 15

Attributes 17

Methods 17

Messages 17

Using UML to Model a Class Diagram 18

Encapsulation and Data Hiding 19

Interfaces 19

Implementations 20

A Real-World Example of the Interface/Implementation
Paradigm 20

A Model of the Interface/Implementation Paradigm
21

Inheritance 22

Superclasses and Subclasses 23

Abstraction 23

Is-a Relationships 25

Polymorphism 25

Composition 28

Abstraction 29

Has-a Relationships 29

Conclusion 29

Example Code Used in This Chapter 30

2 How to Think in Terms of Objects 37
Knowing the Difference Between the Interface and the
Implementation 38

The Interface 40

The Implementation 40

An Interface/Implementation Example 41

Using Abstract Thinking When Designing Interfaces 45

Giving the User the Minimal Interface Possible 47

Determining the Users 48

Object Behavior 48

Environmental Constraints 48

Identifying the Public Interfaces 49

Identifying the Implementation 50

Conclusion 50

References 51

3 Advanced Object-Oriented Concepts 53
Constructors 53

The Default Constructor 54

When Is a Constructor Called? 54

What’s Inside a Constructor? 54

The Default Constructor 54

Using Multiple Constructors 55

The Design of Constructors 59

Error Handling 60

Ignoring the Problem 60

Checking for Problems and Aborting the Application 60

Checking for Problems and Attempting to Recover 61

Throwing an Exception 61

The Concept of Scope 63

Local Attributes 64

Object Attributes 65

Class Attributes 67

Operator Overloading 68

Multiple Inheritance 69

Object Operations 70

Conclusion 71

References 71

Example Code Used in This Chapter 72

4 The Anatomy of a Class 75
The Name of the Class 75

Comments 77

Attributes 77

Constructors 79

Accessors 80

Public Interface Methods 83

Private Implementation Methods 83

Conclusion 84

References 84

Example Code Used in This Chapter 84

5 Class Design Guidelines 87
Modeling Real World Systems 87

Identifying the Public Interfaces 88

The Minimum Public Interface 88

Hiding the Implementation 89

Designing Robust Constructors (and Perhaps Destructors)
89

Designing Error Handling into a Class 90

Documenting a Class and Using Comments 91

Building Objects with the Intent to Cooperate 91

Designing with Reuse in Mind 91

Documenting a Class and Using Comments 91

Designing with Extensibility in Mind 92

Making Names Descriptive 92

Abstracting Out Nonportable Code 93

Providing a Way to Copy and Compare Objects 93

Keeping the Scope as Small as Possible 94

A Class Should Be Responsible for Itself 95

Designing with Maintainability in Mind 96

Using Iteration 97

Testing the Interface 97

Using Object Persistence 99

Serializing and Marshaling Objects 100

Conclusion 100

References 101

Example Code Used in This Chapter 101

6 Designing with Objects 103
Design Guidelines 103

Performing the Proper Analysis 107

Developing a Statement of Work 107

Gathering the Requirements 107

Developing a Prototype of the User Interface 108

Identifying the Classes 108

Determining the Responsibilities of Each Class 108

Determining How the Classes Collaborate with Each
Other 109

Creating a Class Model to Describe the System 109

Case Study: A Blackjack Example 109

Using CRC Cards 111

Identifying the Blackjack Classes 112

Identifying the Classes’ Responsibilities 115

UML Use-Cases: Identifying the Collaborations 120

First Pass at CRC Cards 124

UML Class Diagrams: The Object Model 126

Prototyping the User Interface 127

Conclusion 127

References 128

7 Mastering Inheritance and Composition 129
Reusing Objects 129

Inheritance 130

Generalization and Specialization 133

Design Decisions 134

Composition 135

Representing Composition with UML 136

Why Encapsulation Is Fundamental to OO 138

How Inheritance Weakens Encapsulation 139

A Detailed Example of Polymorphism 141

Object Responsibility 141

Conclusion 145

References 146

Example Code Used in This Chapter 146

x Contents

8 Frameworks and Reuse: Designing with Interfaces
and Abstract Classes 151
Code: To Reuse or Not to Reuse? 151

What Is a Framework? 152

What Is a Contract? 153

Abstract Classes 154

Interfaces 157

Tying It All Together 159

The Compiler Proof 161

Making a Contract 162

System Plug-in-Points 165

An E-Business Example 165

An E-Business Problem 165

The Non-Reuse Approach 166

An E-Business Solution 168

The UML Object Model 168

Conclusion 173

References 173

Example Code Used in This Chapter 173

9 Building Objects 179
Composition Relationships 179

Building in Phases 181

Types of Composition 183

Aggregations 183

Associations 184

Using Associations and Aggregations Together 185

Avoiding Dependencies 186

Cardinality 186

Multiple Object Associations 189

Optional Associations 190

Tying It All Together: An Example 191

Conclusion 192

References 192

10 Creating Object Models with UML 193
What Is UML? 193

The Structure of a Class Diagram 194

xiContents

Attributes and Methods 196

Attributes 196

Methods 197

Access Designations 197

Inheritance 198

Interfaces 200

Composition 201

Aggregations 201

Associations 201

Cardinality 204

Conclusion 205

References 205

11 Objects and Portable Data: XML 207
Portable Data 207

The Extensible Markup Language (XML) 209

XML Versus HTML 209

XML and Object-Oriented Languages 210

Sharing Data Between Two Companies 211

Validating the Document with the Document Type
Definition (DTD) 212

Integrating the DTD into the XML Document 213

Using Cascading Style Sheets 220

Conclusion 223

References 223

12 Persistent Objects: Serialization and Relational
Databases 225
Persistent Objects Basics 225

Saving the Object to a Flat File 227

Serializing a File 227

Implementation and Interface Revisited 229

What About the Methods? 231

Using XML in the Serialization Process 231

Writing to a Relational Database 234

Accessing a Relational Database 236

Loading the Driver 238

Making the Connection 238

The SQL Statements 239

xii Contents

Conclusion 242

References 242

Example Code Used in This Chapter 242

13 Objects and the Internet 247
Evolution of Distributed Computing 247

Object-Based Scripting Languages 248

A JavaScript Validation Example 250

Objects in a Web Page 253

JavaScript Objects 254

Web Page Controls 255

Sound Players 257

Movie Players 257

Flash 258

Distributed Objects and the Enterprise 258

The Common Object Request Broker Architecture
(CORBA) 259

Web Services Definition 263

Web Services Code 267

Invoice.cs 267

Invoice.vb 268

Conclusion 270

References 270

14 Objects and Client/Server Applications 271
Client/Server Approaches 271

Proprietary Approach 272

Serialized Object Code 272

Client Code 273

Server Code 275

Running the Proprietary Client/Server Example 276

Nonproprietary Approach 278

Object Definition Code 278

Client Code 280

Server Code 281

Running the Nonproprietary Client/Server Example 283

Conclusion 283

References 284

Example Code Used in This Chapter 284

15 Design Patterns 287
Why Design Patterns? 288

Smalltalk’s Model/View/Controller 289

Types of Design Patterns 290

Creational Patterns 291

Structural Patterns 295

Behavioral Patterns 298

Antipatterns 299

Conclusion 300

References 300

Example Code Used in This Chapter 301

Index 309

About the Author
Matt Weisfeld is an associate professor in business & technology at Cuyahoga
Community College (Tri-C) in Cleveland, Ohio.A member of the Information
Technology faculty, he focuses on programming, web development, and entrepreneur-
ship. Prior to joining Tri-C,Weisfeld spent 20 years in the information technology indus-
try gaining experience in software development, project management, small business
management, corporate training, and part-time teaching. He holds an MS in computer
science and an MBA in project management. Besides the first two editions of The Object-
Oriented Thought Process, he has published two other computer books and articles in mag-
azines and journals such as developer.com, Dr. Dobb’s Journal, The C/C++ Users Journal,
Software Development Magazine, Java Report, and the international journal Project
Management.

Dedication
To Sharon, Stacy, Stephanie, and Duffy

Acknowledgments
As with the first two editions, this book required the combined efforts of many people. I
would like to take the time to acknowledge as many of these people as possible, for
without them, this book would never have happened.

First and foremost, I would like to thank my wife Sharon for all of her help. Not only
did she provide support and encouragement throughout this lengthy process, she is also
the first line editor for all of my writing.

I would also like to thank my mom and the rest of my family for their continued
support.

I have really enjoyed working with the people at Pearson on all three editions of this
book.Working with editors Mark Taber, Seth Kerney,Vanessa Evans, and Songlin Qiu has
been a pleasure.

A special thanks goes to Jon Upchurch for his help with much of the code as well as
the technical editing of the manuscript.

Finally, thanks to my daughters, Stacy and Stephanie, and my cat Duffy for keeping
me on my toes.

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator.We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

You can email or write me directly to let me know what you did or didn’t like about
this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or email address. I will carefully review your comments and share them
with the author and editors who worked on the book.

Email: feedback@developers-library.info
Mail: Mark Taber

Associate Publisher
Pearson Education
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at informit.com for
convenient access to any updates, downloads, or errata that might be available for
this book.

Introduction

This Book’s Scope
As the title indicates, this book is about the object-oriented (OO) thought process. Obvi-
ously, choosing the theme and title of the book are important decisions; however, these
decisions were not all that simple. Numerous books deal with various levels of object ori-
entation. Several popular books deal with topics including OO analysis, OO design, OO
programming, design patterns, OO data (XML), the Unified Modeling Language (UML),
OO Internet development, various OO programming languages, and many other topics
related to OO development.

However, while pouring over all of these books, many people forget that all of these
topics are built on a single foundation: how you think in OO ways. It is unfortunate, but
software professionals often dive into these books without taking the appropriate time
and effort to really understand the concepts behind the content.

I contend that learning OO concepts is not accomplished by learning a specific devel-
opment method or a set of tools. Doing things in an OO manner is, simply put, a way of
thinking.This book is all about the OO thought process.

Separating the methods and tools from the OO thought process is not easy. Many peo-
ple are introduced to OO concepts via one of these methods or tools. For example, years
ago, most C programmers were first introduced to object orientation by migrating di-
rectly to C++—before they were even remotely exposed to OO concepts. Other soft-
ware professionals were first introduced to object orientation by presentations that
included object models using UML—again, before they were even exposed directly to
OO concepts. It is not unusual to find that programming books and courses defer OO
concepts until later in the learning process.

It is important to understand the significant difference between learning OO concepts
and using the methods and tools that support the paradigm.This came into focus for me
before I worked on the first edition of this book when I read articles such as Craig Lar-
man’s “What the UML Is—and Isn’t,” In this article he states,

Unfortunately, in the context of software engineering and the UML diagramming language,
acquiring the skills to read and write UML notation seems to sometimes be equated with
skill in object-oriented analysis and design. Of course, this is not so, and the latter is much
more important than the former. Therefore, I recommend seeking education and educational
materials in which intellectual skill in object-oriented analysis and design is paramount
rather than UML notation or the use of a case tool.

2 Introduction

Although learning a modeling language is an important step, it is much more impor-
tant to learn OO skills first. Learning UML before OO concepts is similar to learning
how to read an electrical diagram without first knowing anything about electricity.

The same problem occurs with programming languages.As stated earlier, many C
programmers moved into the realm of object orientation by migrating to C++ before
being directly exposed to OO concepts.This would always come out in an interview.
Many times developers who claim to be C++ programmers are simply C programmers
using C++ compilers. Even now, with languages such as C# .NET,VB .NET, and Java
well established, a few key questions in a job interview can quickly uncover a lack of
OO understanding.

Early versions of Visual Basic are not OO. C is not OO, and C++ was developed to be
backward compatible with C. Because of this, it is quite possible to use a C++ compiler
(writing only C syntax) while forsaking all of C++’s OO features. Even worse, a pro-
grammer can use just enough OO features to make a program incomprehensible to OO
and non-OO programmers alike.

Thus, it is of vital importance that while you’re on the road to OO development, you
first learn the fundamental OO concepts. Resist the temptation to jump directly into a
programming language (such as VB .NET, C++, C# .NET or Java) or a modeling lan-
guage (such as UML), and take the time to learn the object-oriented thought process.

In my first class in Smalltalk in the late 1980s, the instructor told the class that the new
OO paradigm was a totally new way of thinking (despite the fact that it has been around since
the 60s). He went on to say that although all of us were most likely very good program-
mers, about 10%–20% of us would never really grasp the OO way of doing things. If this
statement is indeed true, it is most likely because some people never really take the time
to make the paradigm shift and learn the underlying OO concepts.

What’s New in the Third Edition
As stated often in this introduction, my vision for the first edition was primarily a con-
ceptual book.Although I still adhere to this goal for the second and third editions, I have
included several application topics that fit well with object-oriented concepts. For the
third edition I expand on many of the topics of the second edition and well as include
totally new chapters.These revised and updated concepts

n XML is used for object communication.
n Object persistence and serialization.
n XML integrated into the languages object definition.
n Adding properties to attributes.
n XML-based Internet applications.
n Client/Server technologies.
n Expanded code examples in Java, C# .NET and VB .NET.

3This Book’s Scope

The chapters that cover these topics are still conceptual in nature; however, many of the
chapters include Java code that shows how these concepts are implemented. In this third
edition, a code appendix is included that presents the chapter’s examples in C# .NET and
Visual Basic .NET.

The Intended Audience
This book is a general introduction to fundamental OO concepts with code examples to
reinforce the concepts. One of the most difficult juggling acts was to keep the material
conceptual while still providing a solid, technical code base.The goal of this book is to al-
low a reader to understand the concepts and technology without having a compiler at
hand. However, if you do have a compiler available, then there is code to be investigated.

The intended audience includes business managers, designers, developers, program-
mers, project managers, and anyone who wants to gain a general understanding of what
object orientation is all about. Reading this book should provide a strong foundation for
moving to other books covering more advanced OO topics.

Of these more advanced books, one of my favorites remains Object-Oriented Design in
Java by Stephen Gilbert and Bill McCarty. I really like the approach of the book, and have
used it as a textbook in classes I have taught on OO concepts. I cite Object-Oriented De-
sign in Java often throughout this book, and I recommend that you graduate to it after
you complete this one.

Other books that I have found very helpful include Effective C++ by Scott Meyers,
Classical and Object-Oriented Software Engineering by Stephen R. Schach, Thinking in C++
by Bruce Eckel, UML Distilled by Martin Flower, and Java Design by Peter Coad and
Mark Mayfield.

The conceptual nature of this book provides a unique perspective in regards to other
computer technology books.While books that focus on specific technologies, such as
programming languages, struggle with the pace of change, this book has the luxury of
presenting established concepts that, while certainly being fine-tuned, do not experience
radical changes.With this in mind, many of the books that were referenced several years
ago, are still referenced because the concepts are still fundamentally the same.

This Book’s Scope
It should be obvious by now that I am a firm believer in becoming comfortable with the
object-oriented thought process before jumping into a programming language or model-
ing language.This book is filled with examples of code and UML diagrams; however, you
do not need to know a specific programming language or UML to read it.After all I have
said about learning the concepts first, why is there so much Java, C# .NET, and VB .NET
code and so many UML diagrams? First, they are all great for illustrating OO concepts.
Second, both are vital to the OO process and should be addressed at an introductory
level.The key is not to focus on Java, C# .NET, and VB .NET or UML, but to use them
as aids in the understanding of the underlying concepts.

4 Introduction

The Java, C# .NET and VB .NET examples in the book illustrate concepts such as
loops and functions. However, understanding the code itself is not a prerequisite for un-
derstanding the concepts; it might be helpful to have a book at hand that covers specific
languages syntax if you want to get more detailed.

I cannot state too strongly that this book does not teach Java, C# .NET, and VB .NET
or UML, all of which can command volumes unto themselves. It is my hope that this
book will whet your appetite for other OO topics, such as OO analysis, object-oriented
design, and OO programming.

This Book’s Conventions
The following conventions are used in this book:

n Code lines, commands, statements, and any other code-related terms appear in a
monospace typeface.

n Placeholders that stand for what you should actually type appear in italic mono-
space.Text that you should type appears in bold monospace.

n Throughout the book, there are special sidebar elements, such as

Note
A Note presents interesting information related to the discussion—a little more insight or a
pointer to some new technique.

Tip
A Tip offers advice or shows you an easier way of doing something.

Caution
A Caution alerts you to a possible problem and gives you advice on how to avoid it.

Source Code Used in This Book
You can download all the source code and examples discussed within this book from the
publisher’s website.

1
Introduction to

Object-Oriented Concepts

Although many people find this bit of information surprising, object-oriented (OO)
software development has been around since the early 1960s. Objects are now used
throughout the software development industry. It is no secret that the software industry
can be slow-moving at times. It is also true that, when systems are working fine, there has
to be a compelling reason to replace them.This has somewhat slowed the propagation of
OO systems.There are many non-OO legacy systems (that is, older systems that are already
in place) that are doing the job—so why risk potential disaster by changing them? In
most cases you should not change them, at least not simply for the sake of change.There
is nothing inherently wrong with systems written in non–OO code. However, brand-new
development definitely warrants the consideration of using OO technologies.

Although there has been a steady and significant growth in OO development in the
past 15 years, the continued reliance on the Internet has helped catapult it even further
into the mainstream.The emergence of day-to-day business transactions on the Internet
has opened a brand-new arena, where much of the software development is new and
mostly unencumbered by legacy concerns. Even when there are legacy concerns, there is
a trend to wrap the legacy systems in object wrappers.

Object Wrappers
Object wrappers are object-oriented code that includes other code inside. For example, you
can take a structured module and wrap it inside an object to make it look like an object. You
can also use object wrappers to wrap functionality such as security features, non-portable
hardware features, and so on.

Today, one of the most interesting areas of software development is the marriage of legacy
and Internet based systems. In many cases, a web-based front-end ultimately connects to
data that resides on a Mainframe. Developers who can combine the skills of mainframe
and web development are in demand.

6 Chapter 1 Introduction to Object-Oriented Concepts

Inputs Outputs

Figure 1.1 Black boxes.

Objects have certainly made their way into our personal and professional information
systems (IS) lives—and they cannot be ignored.You probably experience objects in your
daily like without even knowing it.These experiences can take place in your car, talking
on your cell phone, using your digital TV, and many other situations.

With the success of Java, Microsoft’s .NET technologies and many others, objects are
becoming a major part of the technology equation.With the explosion of the Internet,
and countless local networks, the electronic highway has in essence become an object-
based highway (in the case of wireless, object-based signals).As businesses gravitate toward
the Web, they are gravitating toward objects because the technologies used for electronic
commerce are mostly OO in nature.

This chapter is an overview of the fundamental OO concepts.The concepts covered
here touch on most, if not all, of the topics covered in subsequent chapters, which explore
these issues in much greater detail.

Procedural Versus OO Programming
Before we delve deeper into the advantages of OO development, let’s consider a more
fundamental question:What exactly is an object? This is both a complex and a simple
question. It is complex because learning any method of software development is not triv-
ial. It is simple because people already think in terms of objects.

For example, when you look at a person, you see the person as an object.And an ob-
ject is defined by two terms: attributes and behaviors.A person has attributes, such as eye
color, age, height, and so on.A person also has behaviors, such as walking, talking, breath-
ing, and so on. In its basic definition, an object is an entity that contains both data and be-
havior.The word both is the key difference between OO programming and other
programming methodologies. In procedural programming, for example, code is placed
into totally distinct functions or procedures. Ideally, as shown in Figure 1.1, these proce-
dures then become “black boxes,” where inputs go in and outputs come out. Data is
placed into separate structures and is manipulated by these functions or procedures.

Difference Between OO and Procedural
In OO design, the attributes and behaviors are contained within a single object, whereas in
procedural, or structured design, the attributes and behaviors are normally separated.

7Procedural Versus OO Programming

As OO design grew in popularity, one of the realities that slowed its acceptance was the
fact that there were a lot of non-OO systems in place that worked perfectly fine.Thus, it
did not make any business sense to simply change the systems for the sake of change.Any-
one who is familiar with any computer system knows that any change can spell disaster—
even if the change is perceived to be slight.

This situation came into play with the lack of acceptance of OO databases.At one
point in the acceptance of OO development it seemed somewhat likely that OO data-
bases would replace relational databases. However, this never happened. Businesses had a
lot of money invested in relational databases, and there was one overriding factor—they
worked.When all of the costs and risks of converting systems from relational to OO data-
bases became apparent, there was no compelling reason to switch.

In fact, the business forces have now found a happy middle ground. Much of the soft-
ware development practices today have flavors of several development methodologies such
as OO and structured.

As illustrated in Figure 1.2, in structured programming the data is often separated from
the procedures, and sometimes the data is global, so it is easy to modify data that is outside
the scope of your code.This means that access to data is uncontrolled and unpredictable
(that is, multiple functions may have access to the global data). Second, because you have
no control over who has access to the data, testing and debugging are much more diffi-
cult. Objects address these problems by combining data and behavior into a nice, complete
package.

Function 1

Global Data

Function 2

Function 3 Function 4

Figure 1.2 Using global data.

8 Chapter 1 Introduction to Object-Oriented Concepts

Proper Design
We can state that when properly designed, there is no such thing as global data in an OO
model. This fact provides a high amount of data integrity in OO systems.

Rather than replacing other software development paradigms, objects are an evolutionary
response. Structured programs have complex data structures, such as arrays, and so on.
C++ has structures, which have many of the characteristics of objects (classes).

However, objects are much more than data structures and primitive data types, such as
integers and strings.Although objects do contain entities such as integers and strings,
which are used to represent attributes, they also contain methods, which represent behav-
iors. In an object, methods are used to perform operations on the data as well as other ac-
tions. Perhaps more importantly, you can control access to members of an object (both
attributes and methods).This means that some members, both attributes and methods, can
be hidden from other objects. For instance, an object called Math might contain two inte-
gers, called myInt1 and myInt2. Most likely, the Math object also contains the necessary
methods to set and retrieve the values of myInt1 and myInt2. It might also contain a
method called sum() to add the two integers together.

Data Hiding
In OO terminology, data is referred to as attributes, and behaviors are referred to as meth-
ods. Restricting access to certain attributes and/or methods is called data hiding.

By combining the attributes and methods in the same entity, which in OO parlance is
called encapsulation, we can control access to the data in the Math object. By defining these
integers as off-limits, another logically unconnected function cannot manipulate the inte-
gers myInt1 and myInt2—only the Math object can do that.

Sound Class Design Guidelines
Keep in mind that it is possible to create poorly designed OO classes that do not restrict ac-
cess to class attributes. The bottom line is that you can design bad code just as efficiently
with OO design as with any other programming methodology. Simply take care to adhere to
sound class design guidelines (see Chapter 5 for class design guidelines).

What happens when another object—for example, myObject—wants to gain access to the
sum of myInt1 and myInt2? It asks the Math object: myObject sends a message to the Math

object. Figure 1.3 shows how the two objects communicate with each other via their
methods.The message is really a call to the Math object’s sum method.The sum method
then returns the value to myObject.The beauty of this is that myObject does not need to
know how the sum is calculated (although I’m sure it can guess).With this design
methodology in place, you can change how the Math object calculates the sum without
making a change to myObject (as long as the means to retrieve the sum do not change).
All you want is the sum—you don’t care how it is calculated.

Using a simple calculator example illustrates this concept.When determining a sum
with a calculator, all you use is the calculator’s interface—the keypad and LED display.The
calculator has a sum method that is invoked when you press the correct key sequence.You

9Moving from Procedural to Object-Oriented Development

myObject

Data

Method Method

Math

Method

Data

Method Method Method

Figure 1.3 Object-to-object
communication.

may get the correct answer back; however, you have no idea how the result was ob-
tained—either electronically or algorithmically.

Calculating the sum is not the responsibility of myObject—it’s the Math object’s re-
sponsibility.As long as myObject has access to the Math object, it can send the appropriate
messages and obtain the proper result. In general, objects should not manipulate the inter-
nal data of other objects (that is, myObject should not directly change the value of myInt1
and myInt2).And, for reasons we will explore later, it is normally better to build small ob-
jects with specific tasks rather than build large objects that perform many.

Moving from Procedural to Object-Oriented
Development
Now that we have a general understanding about some of the differences about proce-
dural and object-oriented technologies, let’s delve a bit deeper into both.

Procedural Programming
Procedural programming normally separates the data of a system from the operations that
manipulate the data. For example, if you want to send information across a network, only
the relevant data is sent (see Figure 1.4), with the expectation that the program at the
other end of the network pipe knows what to do with it. In other words, some sort of

10 Chapter 1 Introduction to Object-Oriented Concepts

Data (ie:packets)

Client Server

Figure 1.4 Data transmitted
over a wire.

Employee Object

Client Server

Figure 1.5 Objects transmitted over a wire.

handshaking agreement must be in place between the client and server to transmit the
data. In this model, it is possible that no code is actually sent over the wire.

OO Programming
The fundamental advantage of OO programming is that the data and the operations that
manipulate the data (the code) are both encapsulated in the object. For example, when an
object is transported across a network, the entire object, including the data and behavior,
goes with it. In Figure 1.5, the Employee object is sent over the network.

Proper Design
A good example of this concept is a Web object, such as a Java object/applet. The browser
has no idea of what the Web object will do—the code is not there previously. When the ob-
ject is loaded, the browser executes the code within the object and uses the data contained
within the object.

What Exactly Is an Object?
Objects are the building blocks of an OO program.A program that uses OO technology
is basically a collection of objects.To illustrate, let’s consider that a corporate system con-
tains objects that represent employees of that company. Each of these objects is made up of
the data and behavior described in the following sections.

Object Data
The data stored within an object represents the state of the object. In OO programming
terminology, this data is called attributes. In our example, as shown in Figure 1.6, employee
attributes could be Social Security numbers, date of birth, gender, phone number, and so
on.The attributes contain the information that differentiates between the various objects,

11What Exactly Is an Object?

in this case the employees.Attributes are covered in more detail later in this chapter in the
discussion on classes.

Object Behaviors
The behavior of an object is what the object can do. In procedural languages the behavior
is defined by procedures, functions, and subroutines. In OO programming terminology
these behaviors are contained in methods, and you invoke a method by sending a message
to it. In our employee example, consider that one of the behaviors required of an em-
ployee object is to set and return the values of the various attributes.Thus, each attribute
would have corresponding methods, such as setGender() and getGender(). In this case,
when another object needs this information, it can send a message to an employee object
and ask it what its gender is.

Not surprisingly, the application of getters and setters, as with much of object-oriented
technology, has evolved since the first edition of this book was published.This is especially
true when in comes to data.As we will see in Chapter 11, Objects and Portable Data: XML
and Chapter 12, Persistent Objects: Serialization and Relational Databases, data is now con-
structed in an object-oriented manner. Remember that one of the most interesting, not to
mention powerful, advantages of using objects is that the data is part of the package—it is
not separated from the code.

The emergence of XML has not only focused attention on presenting data in a portable
manner; it also has facilitated alternative ways for the code to access the data. In .NET
techniques, the getters and setters are actually considered properties of the data itself.

For example, consider an attribute called Name, using Java, that looks like the following:

public String Name;

The corresponding getter and setter would look like this:

public void setName (String n) {name = n;};

public String getName() {return name;};

Attributes
SocialSecurityNumber

Gender
DateOfBirth

Figure 1.6 Employee attributes.

12 Chapter 1 Introduction to Object-Oriented Concepts

Now, when creating an XML attribute called Name, the definition in C# .NET may
look something like this:

[XmlAttribute(“name”)]

public String Name

{

get

{

return this.strName;

}

set

{

if (value == null) return;

this.strName = value;

}

}

In this approach, the getters and setters are actually properties of the attributes—in this
case, Name.

Regardless of the approach, the purpose is the same—controlled access to the attribute.
For this chapter, I want to first concentrate on the conceptual nature of accessor methods;
we will get more into properties when we cover object-oriented data in Chapter 11 and
beyond.

Getters and Setters
The concept of getters and setters supports the concept of data hiding. Because other ob-
jects should not directly manipulate data within another object, the getters and setters pro-
vide controlled access to an object’s data. Getters and setters are sometimes called
accessor methods and mutator methods, respectively.

Note that we are only showing the interface of the methods, and not the implementation.
The following information is all the user needs to know to effectively use the methods:

n The name of the method
n The parameters passed to the method
n The return type of the method

To further illustrate behaviors, consider Figure 1.7. In Figure 1.7, the Payroll object con-
tains a method called CalculatePay() that calculates the pay for a specific employee.
Among other information, the Payroll object must obtain the Social Security number of
this employee.To get this information, the payroll object must send a message to the
Employee object (in this case, the getSocialSecurityNumber() method). Basically, this
means that the Payroll object calls the getSocialSecurityNumber() method of the

13What Exactly Is an Object?

Behaviors
getSocialSecurityNumber

getGender
getDateOfBirth

Employee Object

Message: get_SS#()

Payroll Object

Figure 1.7 Employee behaviors.

Employee object.The employee object recognizes the message and returns the requested
information.

To illustrate further, Figure 1.8 is a class diagram representing the Employee/Payroll
system we have been talking about.

–socialSecurityNumber:String
–gender:boolean
–dateOfBirth:Date

+getSocialSecurityNumber:String
+getGender:boolean
+getDateOfBirth:Date
+setSocialSecurityNumber:void
+setGender:void
+setDateOfBirth:void

–pay:double
+calculatePay:double

Employee

Payroll

Figure 1.8 Employee and
payroll class diagrams.

14 Chapter 1 Introduction to Object-Oriented Concepts

UML Class Diagrams
Because this is the first class diagram we have seen, it is very basic and lacks some of the
constructs (such as constructors) that a proper class should contain. Fear not—we will dis-
cuss class diagrams and constructors in more detail in Chapter 3, “Advanced Object-Ori-
ented Concepts.”

Each class diagram is defined by three separate sections: the name itself, the data (attrib-
utes), and the behaviors (methods). In Figure 1.8, the Employee class diagram’s attribute
section contains SocialSecurityNumber, Gender, and DateofBirth, while the method
section contains the methods that operate on these attributes.You can use UML modeling
tools to create and maintain class diagrams that correspond to real code.

Modeling Tools
Visual modeling tools provide a mechanism to create and manipulate class diagrams using
the Unified Modeling Language (UML). UML is discussed throughout this book, and you can
find a description of this notation in Chapter 10, “Creating Object Models with UML.”

We will get into the relationships between classes and objects later in this chapter, but for
now you can think of a class as a template from which objects are made.When an object
is created, we say that the objects are instantiated.Thus, if we create three employees, we
are actually creating three totally distinct instances of an Employee class. Each object con-
tains its own copy of the attributes and methods. For example, consider Figure 1.9.An
employee object called John (John is its identity) has its own copy of all the attributes and
methods defined in the Employee class.An employee object called Mary has its own copy
of attributes and methods.They both have a separate copy of the DateOfBirth attribute
and the getDateOfBirth method.

An Implementation Issue
Be aware that there is not necessarily a physical copy of each method for each object.
Rather, each object points to the same implementation. However, this is an issue left up to
the compiler/operating platform. From a conceptual level, you can think of objects as being
wholly independent and having their own attributes and methods.

What Exactly Is a Class?
In short, a class is a blueprint for an object.When you instantiate an object, you use a class
as the basis for how the object is built. In fact, trying to explain classes and objects is really
a chicken-and-egg dilemma. It is difficult to describe a class without using the term object
and visa versa. For example, a specific individual bike is an object. However, someone had
to have created the blueprints (that is, the class) to build the bike. In OO software, unlike
the chicken-and-egg dilemma, we do know what comes first—the class.An object cannot
be instantiated without a class.Thus, many of the concepts in this section are similar to
those presented earlier in the chapter, especially when we talk about attributes and meth-
ods.

15What Exactly Is a Class?

// Data-attributes
socialSecurityNumber;
gender;
dateOfBirth;

// Behavior-methods
getSocialSecurityNumber() {}
getGender() {}
getDateOfBirth() {}
setSocialSecurityNumber(){}
setGender() {}
setDateOfBirth() {}

Program Space

// Data-attributes
socialSecurityNumber;
gender;
dateOfBirth;

// Behavior-methods
getSocialSecurityNumber() {}
getGender() {}
getDateOfBirth() {}
setSocialSecurityNumber(){}
setGender() {}
setDateOfBirth() {}

Program Space

Reference: John

Reference: Mary

Figure 1.9 Program spaces.

To explain classes and methods, it’s helpful to use an example from the relational database
world. In a database table, the definition of the table itself (fields, description, and data
types used) would be a class (metadata), and the objects would be the rows of the table
(data).

This book focuses on the concepts of OO software and not on a specific implementa-
tion (such as Java, C#,Visual Basic .NET, or C++), but it is often helpful to use code ex-
amples to explain some concepts, so Java code fragments are used throughout the book to
help explain some concepts when appropriate. However, the end of each chapter will
contain the example code in C# .NET,VB .NET, and C++ as well (when applicable).

The following sections describe some of the fundamental concepts of classes and how
they interact.

Classes Are Object Templates
Classes can be thought of as the templates, or cookie cutters, for objects as seen in Figure
1.10.A class is used to create an object.

A class can be thought of as a sort of higher-level data type. For example, just as you
create an integer or a float:

int x;

float y;

16 Chapter 1 Introduction to Object-Oriented Concepts

Class Template

Objects: Cookies

Cookie Dough

Cookie
Cutter

Cookie
1

Cookie
2

Cookie
3

Cookie
4

Figure 1.10 Class template.

you can also create an object by using a predefined class:

myClass myObject;

In this example, the names themselves make it obvious that myClass is the class and
myObject is the object.

Remember that each object has its own attributes (analogous to fields) and behaviors
(analogous to functions or routines).A class defines the attributes and behaviors that all
objects created with this class will possess. Classes are pieces of code. Objects instantiated
from classes can be distributed individually or as part of a library. Because objects are cre-
ated from classes, it follows that classes must define the basic building blocks of objects (at-
tributes, behavior, and messages). In short, you must design a class before you can create an
object.

For example, here is a definition of a Person class:

public class Person{

//Attributes

private String name;

private String address;

//Methods

public String getName(){

17What Exactly Is a Class?

return name;

}

public void setName(String n){

name = n;

}

public String getAddress(){

return address;

}

public void setAddress(String adr){

address = adr;

}

}

Attributes
As you already saw, the data of a class is represented by attributes. Each class must define
the attributes that will store the state of each object instantiated from that class. In the
Person class example in the previous section, the Person class defines attributes for name
and address.

Access Designations
When a data type or method is defined as public, other objects can directly access it.
When a data type or method is defined as private, only that specific object can access it.
Another access modifier, protected, allows access by related objects, which you’ll learn
about in Chapter 3, “Advanced Object-Oriented Concepts.”

Methods
As you learned earlier in the chapter, methods implement the required behavior of a class.
Every object instantiated from this class has the methods as defined by the class. Methods
may implement behaviors that are called from other objects (messages) or provide the fun-
damental, internal behavior of the class. Internal behaviors are private methods that are
not accessible by other objects. In the Person class, the behaviors are getName(),
setName(), getAddress(), and setAddress().These methods allow other objects to in-
spect and change the values of the object’s attributes.This is common technique in OO
systems. In all cases, access to attributes within an object should be controlled by the ob-
ject itself—no other object should directly change an attribute of another.

Messages
Messages are the communication mechanism between objects. For example, when Object
A invokes a method of Object B, Object A is sending a message to Object B. Object B’s
response is defined by its return value. Only the public methods, not the private methods,
of an object can be invoked by another object.The following code illustrates this concept:

18 Chapter 1 Introduction to Object-Oriented Concepts

public class Payroll{

String name;

Person p = new Person();

String = p.setName(“Joe”);

... code

String = p.getName();

}

In this example (assuming that a Payroll object is instantiated), the Payroll object is
sending a message to a Person object, with the purpose of retrieving the name via the
getName method.Again, don’t worry too much about the actual code, as we are really in-
terested in the concepts.We address the code in detail as we progress through the book.

Using UML to Model a Class Diagram
Over the years, many tools and modeling methodologies have been developed to assist in
designing software systems. One of the most popular tools in use today is Unified Modeling
Language (UML).Although it is beyond the scope of this book to describe UML in fine
detail, we will use UML class diagrams to illustrate the classes that we build. In fact, we have
already used class diagrams in this chapter. Figure 1.11 shows the Person class diagram we
discussed earlier in the chapter.

As we saw previously, notice that the attributes and methods are separated (the attributes
on the top, and the methods on the bottom).As we delve more deeply into OO design,
these class diagrams will get much more sophisticated and convey much more information
on how the different classes interact with each other.

–name:String
–address:String

+getName:String
+setName:void
+getAddress:String
+setAddress:void

Person

Figure 1.11 The Person
class diagram.

19Encapsulation and Data Hiding

Encapsulation and Data Hiding
One of the primary advantages of using objects is that the object need not reveal all its at-
tributes and behaviors. In good OO design (at least what is generally accepted as good), an
object should only reveal the interfaces that other objects must have to interact with it.
Details not pertinent to the use of the object should be hidden from all other objects.

Encapsulation is defined by the fact that objects contain both the attributes and behav-
iors. Data hiding is a major part of encapsulation.

For example, an object that calculates the square of a number must provide an inter-
face to obtain the result. However, the internal attributes and algorithms used to calculate
the square need not be made available to the requesting object. Robust classes are de-
signed with encapsulation in mind. In the next sections, we cover the concepts of inter-
face and implementation, which are the basis of encapsulation.

Interfaces
We have seen that the interface defines the fundamental means of communication be-
tween objects. Each class design specifies the interfaces for the proper instantiation and
operation of objects.Any behavior that the object provides must be invoked by a message
sent using one of the provided interfaces.The interface should completely describe how
users of the class interact with the class. In most OO languages, the methods that are part
of the interface are designated as public.

Private Data
For data hiding to work, all attributes should be declared as private. Thus, attributes are
never part of the interface. Only the public methods are part of the class interface. Declar-
ing an attribute as public breaks the concept of data hiding.

Let’s look at the example just mentioned: calculating the square of a number. In this ex-
ample, the interface would consist of two pieces:

n How to instantiate a Square object
n How to send a value to the object and get the square of that value in return

As discussed earlier in the chapter, if a user needs access to an attribute, a method is cre-
ated to return the value of the attribute (a getter). If a user then wants to obtain the value
of an attribute, a method is called to return its value. In this way, the object that contains
the attribute controls access to it.This is of vital importance, especially in security, testing,
and maintenance. If you control the access to the attribute, when a problem arises, you do
not have to worry about tracking down every piece of code that might have changed the
attribute—it can only be changed in one place (the setter).

From a security perspective, you don’t want uncontrolled code to change or retrieve
data such as passwords and personal information.

20 Chapter 1 Introduction to Object-Oriented Concepts

Interfaces Versus Interfaces
It is important to note that there are interfaces to the classes as well as the methods—
don’t confuse the two. The interfaces to the classes are the public methods while the inter-
faces to the methods relate to how you call (invoke) them. This will be covered in more
detail later.

Implementations
Only the public attributes and methods are considered the interface.The user should not
see any part of the implementation—interacting with an object solely through class inter-
faces. In the previous example, for instance the Employee class, only the attributes were
hidden. In many cases, there will be methods that also should be hidden and thus not part
of the interface. Continuing the example of the square root from the previous section, the
user does not care how the square root is calculated—as long as it is the correct answer.
Thus, the implementation can change, and it will not affect the user’s code. For example,
the company that produces the calculator can change the algorithm (perhaps because it is
more efficient) without affecting the result.

A Real-World Example of the Interface/Implementation Paradigm
Figure 1.12 illustrates the interface/implementation paradigm using real-world objects
rather than code.The toaster requires electricity.To get this electricity, the cord from the
toaster must be plugged into the electrical outlet, which is the interface.All the toaster
needs to do to obtain the required electricity is to use a cord that complies with the elec-
trical outlet specifications; this is the interface between the toaster and the power com-
pany (actually the power industry).The fact that the actual implementation is a
coal-powered electric plant is not the concern of the toaster. In fact, for all the toaster
cares, the implementation could be a nuclear power plant or a local power generator.
With this model, any appliance can get electricity, as long as it conforms to the interface
specification as seen in Figure 1.12.

Requesting
Object

Interface
Implementation

Figure 1.12 Power plant example.

21Encapsulation and Data Hiding

A Model of the Interface/Implementation Paradigm
Let’s explore the Square class further.Assume that you are writing a class that calculates
the squares of integers.You must provide a separate interface and implementation.That is,
you must provide a way for the user to invoke and obtain the square value.You must also
provide the implementation that calculates the square; however, the user should not know
anything about the specific implementation. Figure 1.13 shows one way to do this. Note
that in the class diagram, the plus sign (+) designates public and the minus sign (-) desig-
nates private.Thus, you can identify the interface by the methods, prefaced with plus
signs.

This class diagram corresponds to the following code:

public class IntSquare {

// private attribute

private int squareValue;

// public interface

public int getSquare (int value) {

SquareValue =calculateSquare(value);

return squareValue;

}

// private implementation

private int calculateSquare (int value) {

return value*value;

}

}

–squareValue:int

+getSquare:int
–calculateSquare:int

IntSquare

Figure 1.13 The square class.

22 Chapter 1 Introduction to Object-Oriented Concepts

Note that the only part of the class that the user has access to is the public method
getSquare, which is the interface.The implementation of the square algorithm is in the
method calculateSquare, which is private.Also notice that the attribute SquareValue is
private because users do not need to know that this attribute exists.Therefore, we have
hidden the part of the implementation:The object only reveals the interfaces the user
needs to interact with it, and details that are not pertinent to the use of the object are
hidden from other objects.

If the implementation were to change—say, you wanted to use ’the language’s built-in
square function—you would not need to change the interface.The user would get the
same functionality, but the implementation would have changed.This is very important
when you’re writing code that deals with data; for example, you can move data from a file
to a database without forcing the user to change any application code.

Inheritance
One of the most powerful features of OO programming is, perhaps, code reuse. Struc-
tured design provides code reuse to a certain extent—you can write a procedure and then
use it as many times as you want. However, OO design goes an important step further, al-
lowing you to define relationships between classes that facilitate not only code reuse, but
also better overall design, by organizing classes and factoring in commonalties of various
classes. Inheritance is a primary means of providing this functionality.

Inheritance allows a class to inherit the attributes and methods of another class.This
allows creation of brand new classes by abstracting out common attributes and behaviors.

One of the major design issues in OO programming is to factor out commonality of
the various classes. For example, say you have a Dog class and a Cat class, and each will
have an attribute for eye color. In a procedural model, the code for Dog and Cat would
each contain this attribute. In an OO design, the color attribute could be moved up to a
class called Mammal—along with any other common attributes and methods. In this case,
both Dog and Cat inherit from the Mammal class, as shown in Figure 1.14.

–eyeColor:int

+getEyeColor:int

Mammal

–barkFrequency:int

+bark:void

Dog

–meowFrequency:int

+meow:void

Cat

Figure 1.14 Mammal hierarchy.

23Inheritance

The Dog and Cat classes both inherit from Mammal.This means that a Dog class actually
has the following attributes:

eyeColor // inherited from Mammal

barkFrequency // defined only for Dogs

In the same vein, Dog object has the following methods:

getEyeColor // inherited from Mammal

bark // defined only for Dogs

When the Dog or the Cat object is instantiated, it contains everything in its own class,
as well as everything from the parent class.Thus, Dog has all the properties of its class defi-
nition, as well as the properties inherited from the Mammal class.

Superclasses and Subclasses
The superclass, or parent class, contains all the attributes and behaviors that are common
to classes that inherit from it. For example, in the case of the Mammal class, all mammals
have similar attributes such as eyeColor and hairColor, as well as behaviors such as
generateInternalHeat and growHair.All mammals have these attributes and behaviors,
so it is not necessary to duplicate them down the inheritance tree for each type of mam-
mal. Duplication requires a lot more work, and perhaps more worrisome, it can introduce
errors and inconsistencies.Thus, the Dog and Cat classes inherit all those common attrib-
utes and behaviors from the Mammal class.The Mammal class is considered the superclass of
the Dog and the Cat subclasses, or child classes.

Inheritance provides a rich set of design advantages.When you’re designing a Cat class,
the Mammal class provides much of the functionality needed. By inheriting from the
Mammal object, Cat already has all the attributes and behaviors that make it a true mam-
mal.To make it more specifically a cat type of mammal, the Cat class must include any at-
tributes or behaviors that pertain solely to a cat.

Abstraction
An inheritance tree can grow quite large.When the Mammal and Cat classes are complete,
other mammals, such as dogs (or lions, tigers, and bears), can be added quite easily.The
Cat class can also be a superclass to other classes. For example, it might be necessary to
abstract the Cat class further, to provide classes for Persian cats, Siamese cats, and so on.
Just as with Cat, the Dog class can be the parent for GermanShepherd and Poodle (see
Figure 1.15).The power of inheritance lies in its abstraction and organization techniques.

In most recent OO languages (such as Java and .NET), a class can only have a single
parent class; however, a class can have many child classes. Some languages, such as C++,
can have multiple parents.The former case is called single-inheritance, and the latter is
called multiple-inheritance.

Note that the classes GermanShepherd and Poodle both inherit from Dog—each con-
tains only a single method. However, because they inherit from Dog, they also inherit

24 Chapter 1 Introduction to Object-Oriented Concepts

–eyeColor:int

+getEyeColor:int

Mammal

–barkFrequency:int

+bark:void

Dog

–meowFrequency:int

+meow:void

Cat

GermanShepherd Poodle

+isGerman:void +isFrench:void

Figure 1.15 Mammal UML diagram.

from Mammal.Thus, the GermanShepherd and Poodle classes contain all the attributes and
methods included in Dog and Mammal, as well as their own (see Figure 1.16).

Mammals

Dogs Cats

Figure 1.16 Mammal hierarchy.

25Inheritance

Is-a Relationships
Consider a Shape example where Circle, Square, and Star all inherit directly from
Shape.This relationship is often referred to as an is-a relationship because a circle is a
shape, and Square is a shape.When a subclass inherits from a superclass, it can do anything
that the superclass can do.Thus, Circle, Square, and Star are all extensions of Shape.

In Figure 1.17, the name on each of the objects represents the Draw method for the
Circle, Star, and Square objects, respectively.When we design this Shape system it
would be very helpful to standardize how we use the various shapes.Thus, we could de-
cide that if we want to draw a shape, no matter what shape, we will invoke a method
called draw. If we adhere to this decision, whenever we want to draw a shape, only the
Draw method needs to be called, regardless of what the shape is. Here lies the fundamental
concept of polymorphism—it is the individual object’s responsibility, be it a Circle,
Star, or Square, to draw itself.This is a common concept in many current software ap-
plications like drawing and word processing applications.

Polymorphism
Polymorphism is a Greek word that literally means many shapes.Although polymorphism is
tightly coupled to inheritance, it is often cited separately as one of the most powerful ad-
vantages to object-oriented technologies.When a message is sent to an object, the object
must have a method defined to respond to that message. In an inheritance hierarchy, all
subclasses inherit the interfaces from their superclass. However, because each subclass is a
separate entity, each might require a separate response to the same message. For example,
consider the Shape class and the behavior called Draw.When you tell somebody to draw a
shape, the first question asked is,“What shape?” No one can draw a shape, as it is an ab-
stract concept (in fact, the Draw() method in the Shape code following contains no imple-
mentation).You must specify a concrete shape.To do this, you provide the actual
implementation in Circle. Even though Shape has a Draw method, Circle overrides this
method and provides its own Draw() method. Overriding basically means replacing an im-
plementation of a parent with one from a child.

Shape

Draw Draw

Draw

Figure 1.17 The shape hierarchy.

26 Chapter 1 Introduction to Object-Oriented Concepts

For example, suppose you have an array of three shapes—Circle, Square, and Star.
Even though you treat them all as Shape objects, and send a Draw message to each Shape
object, the end result is different for each because Circle, Square, and Star provide the
actual implementations. In short, each class is able to respond differently to the same Draw
method and draw itself.This is what is meant by polymorphism.

Consider the following Shape class:

public abstract class Shape{

private double area;

public abstract double getArea();

}

The Shape class has an attribute called area that holds the value for the area of the
shape.The method getArea() includes an identifier called abstract.When a method is
defined as abstract, a subclass must provide the implementation for this method; in this
case, Shape is requiring subclasses to provide a getArea() implementation. Now let’s cre-
ate a class called Circle that inherits from Shape (the extends keyword specifies that
Circle inherits from Shape):

public class Circle extends Shape{

double radius;

public Circle(double r) {

radius = r;

}

public double getArea() {

area = 3.14*(radius*radius);

return (area);

}

}

We introduce a new concept here called a constructor.The Circle class has a method
with the same name, Circle.When a method name is the same as the class and no return
type is provided, the method is a special method, called a constructor. Consider a con-
structor as the entry point for the class, where the object is built; the constructor is a good
place to perform initializations and start-up tasks.

27Inheritance

The Circle constructor accepts a single parameter, representing the radius, and assigns
it to the radius attribute of the Circle class.

The Circle class also provides the implementation for the getArea method, originally
defined as abstract in the Shape class.

We can create a similar class, called Rectangle:

public class Rectangle extends Shape{

double length;

double width;

public Rectangle(double l, double w){

length = l;

width = w;

}

public double getArea() {

area = length*width;

return (area);

}

}

Now we can create any number of rectangles, circles, and so on and invoke their
getArea() method.This is because we know that all rectangles and circles inherit from
Shape, and all Shape classes have a getArea() method. If a subclass inherits an abstract
method from a superclass, it must provide a concrete implementation of that method, or
else it will be an abstract class itself (see Figure 1.18 for a UML diagram).This approach
also provides the mechanism to create other, new classes quite easily.

#area:double

+getArea:double

Shape

length:double
width:double

+Rectangle:
+getArea:double

Rectangle

radius:double

+Circle:
+getArea:double

Circle

Figure 1.18 Shape UML diagram.

28 Chapter 1 Introduction to Object-Oriented Concepts

Thus, we can instantiate the Shape classes in this way:

Circle circle = new Circle(5);

Rectangle rectangle = new Rectangle(4,5);

Then, using a construct such as a stack, we can add these Shape classes to the stack:

stack.push(circle);

stack.push(rectangle);

What Is a Stack?
A stack is a data structure that is a last-in, first-out system. It is like a coin changer, where
you insert coins at the top of the cylinder and, when you need a coin, you simply take one
off the top, which is the last one you inserted. Pushing an item onto the stack means that
you are adding an item to the top (like inserting another coin into the changer). Popping an
item off the stack means that you are taking the last item off the stack (like taking the coin
off the top).

Now comes the fun part.We can empty the stack, and we do not have to worry about
what kind of Shape classes are in it (we just know they are shapes):

while (!stack.empty()) {

Shape shape = (Shape) stack.pop();

System.out.println (“Area = “ + shape.getArea());

}

In reality, we are sending the same message to all the shapes:

shape.getArea()

However, the actual behavior that takes place depends on the type of shape. For exam-
ple, Circle will calculate the area for a circle, and Rectangle will calculate the area of a
rectangle. In effect (and here is the key concept), we are sending a message to the Shape
classes and experiencing different behavior depending on what subclass of Shape is being
used.

This approach is meant to provide standardization across classes, as well as applications.
Consider an office suite that includes a word processing and a spreadsheet application.
Let’s assume that both have a method called Print.This Print method can be part of
the Office class as a requirement any class that inherits from it to implement a Print
method.The interesting thing here is that although both the word processor and spread-
sheet do different things when the Print method is invoked, one prints a processing doc-
ument and the other a spreadsheet document.

Composition
It is natural to think of objects as containing other objects.A television set contains a
tuner and video display.A computer contains video cards, keyboards, and drives.Although
the computer can be considered an object unto itself, the drive is also considered a valid
object. In fact, you could open up the computer and remove the drive and hold it in your

29Conclusion

hand. Both the computer and the drive are considered objects. It is just that the computer
contains other objects—such as drives.

In this way, objects are often built, or composed, from other objects:This is composition.

Abstraction
Just as with inheritance, composition provides a mechanism for building objects. In fact, I
would argue that there are only two ways to build classes from other classes: inheritance
and composition.As we have seen, inheritance allows one class to inherit from another
class.We can thus abstract out attributes and behaviors for common classes. For example,
dogs and cats are both mammals because a dog is-a mammal and a cat is-a mammal.With
composition, we can also build classes by embedding classes in other classes.

Consider the relationship between a car and an engine.The benefits of separating the
engine from the car are evident. By building the engine separately, we can use the engine
in various cars—not to mention other advantages. But we can’t say that an engine is-a car.
This just doesn’t sound right when it rolls off the tongue (and because we are modeling
real-world systems, this is the effect we want). Rather, we use the term has-a to describe
composition relationships.A car has-a(n) engine.

Has-a Relationships
Although an inheritance relationship is considered an is-a relationship for reasons already
discussed, a composition relationship is termed a has-a relationship. Using the example in
the previous section, a television has-a tuner and has-a video display.A television is obvi-
ously not a tuner, so there is no inheritance relationship. In the same vein, a computer
has-a video card, has-a keyboard, and has-a disk drive.The topics of inheritance, composi-
tion, and how they relate to each other is covered in great detail in Chapter 7,“Mastering
Inheritance and Composition.”

Conclusion
There is a lot to cover when discussing OO technologies. However, you should leave this
chapter with a good understanding of the following topics:

n Encapsulation—Encapsulating the data and behavior into a single object is of pri-
mary importance in OO development.A single object contains both its data and
behaviors and can hide what it wants from other objects.

n Inheritance—A class can inherit from another class and take advantage of the at-
tributes and methods defined by the superclass.

n Polymorphism—Polymorphism means that similar objects can respond to the same
message in different ways. For example, you might have a system with many shapes.
However, a circle, a square, and a star are each drawn differently. Using polymor-

30 Chapter 1 Introduction to Object-Oriented Concepts

phism, you can send each of these shapes the same message (for example, Draw), and
each shape is responsible for drawing itself.

n Composition—Composition means that an object is built from other objects.

This chapter covers the fundamental OO concepts of which by now you should have a
good grasp.

Example Code Used in This Chapter
The following code is presented in C# .NET and VB .NET.These examples correspond
to the Java code that is listed inside the chapter itself.

The TestPerson Example: C# .NET

using System;

namespace ConsoleApplication1

{

class TestPerson

{

static void Main(string[] args)

{

Person joe = new Person();

joe.Name = “joe”;

Console.WriteLine(joe.Name);

Console.ReadLine();

}

}

public class Person

{

//Attributes

private String strName;

private String strAddress;

//Methods

public String Name

{

get { return strName; }

set { strName = value; }

}

31Example Code Used in This Chapter

public String Address

{

get { return strAddress; }

set { strAddress = value; }

}

}

}

The TestPerson Example: VB .NET

Module TestPerson

Sub Main()

Dim joe As Person = New Person

joe.Name = “joe”

Console.WriteLine(joe.Name)

Console.ReadLine()

End Sub

End Module

Public Class Person

Private strName As String

Private strAddress As String

Public Property Name() As String

Get

Return strName

End Get

Set(ByVal value As String)

strName = value

End Set

End Property

Public Property Address() As String

Get

Return strAddress

End Get

32 Chapter 1 Introduction to Object-Oriented Concepts

Set(ByVal value As String)

strAddress = value

End Set

End Property

End Class

The TestShape Example: C# .NET

using System;

namespace TestShape

{

class TestShape

{

public static void Main()

{

Circle circle = new Circle(5);

Console.WriteLine(circle.calcArea());

Rectangle rectangle = new Rectangle(4, 5);

Console.WriteLine(rectangle.calcArea());

Console.ReadLine();

}

}

public abstract class Shape

{

protected double area;

public abstract double calcArea();

}

public class Circle : Shape

{

private double radius;

public Circle(double r)

{

radius = r;

33Example Code Used in This Chapter

}

public override double calcArea()

{

area = 3.14 * (radius * radius);

return (area);

}

}

public class Rectangle : Shape

{

private double length;

private double width;

public Rectangle(double l, double w)

{

length = l;

width = w;

}

public override double calcArea()

{

area = length * width;

return (area);

}

}

}

The TestShape Example: VB .NET

Module TestShape

Sub Main()

Dim myCircle As New Circle(2.2)

Dim myRectangle As New Rectangle(2.2, 3.3)

Dim result As Double

result = myCircle.calcArea()

System.Console.Write(“Circle area = “)

System.Console.WriteLine(result)

result = myRectangle.calcArea()

System.Console.Write(“Rectangle area = “)

34 Chapter 1 Introduction to Object-Oriented Concepts

System.Console.WriteLine(result)

System.Console.Read()

End Sub

End Module

Public MustInherit Class Shape

Protected area As Double

Public MustOverride Function calcArea() As Double

End Class

Public Class Circle

Inherits Shape

Dim radius As Double

Sub New(ByVal r As Double)

radius = r

End Sub

Public Overrides Function calcArea() As Double

area = 3.14 * (radius * radius)

Return area

End Function

End Class

Public Class Rectangle

Inherits Shape

Dim length As Double

Dim width As Double

Sub New(ByVal l As Double, ByVal w As Double)

length = l

width = w

End Sub

35Example Code Used in This Chapter

Public Overrides Function calcArea() As Double

area = length * width

Return area

End Function

End Class

This page intentionally left blank

2
How to Think in
Terms of Objects

In Chapter 1,“Introduction to Object-Oriented Concepts,” you learned the fundamen-
tal object-oriented (OO) concepts.The rest of the book delves more deeply into these
concepts as well as introduces several others. Many factors go into a good design, whether
it is an OO design or not.The fundamental unit of OO design is the class.The desired
end result of OO design is a robust and functional object model—in other words, a com-
plete system.

As with most things in life, there is no single right or wrong way to approach a prob-
lem.There are usually many different ways to tackle the same problem. So when attempt-
ing to design an OO solution, don’t get hung up in trying to do a perfect design the first
time (there will always be room for improvement).What you really need to do is brain-
storm and let your thought process go in different directions. Do not try to conform to
any standards or conventions when trying to solve a problem because the whole idea is to
be creative.

In fact, at the start of the process, don’t even begin to consider a specific programming
language.The first order of business is to identify and solve business problems.Work on
the conceptual analysis and design first. Only think about specific technologies when they
are fundamental to the business problem. For example, you can’t design a wireless net-
work without wireless technology. However, it is often the case that you will have more
than one software solution to consider.

Thus, before you start to design a system, or even a class, think the problem through
and have some fun! In this chapter we explore the fine art and science of OO thinking.

Any fundamental change in thinking is not trivial.As a case in point, a lot has been
mentioned about the move from structured to OO development. One side-effect of this
debate is the misconception that structured and object-oriented development are mutu-
ally exclusive.This is not the case.As we know from our discussion on wrappers, struc-
tured and object-oriented development coexist. In fact when you write an OO
application, you are using structured constructs everywhere. I have never seen OO code

38 Chapter 2 How to Think in Terms of Objects

that does not use loops, if-statements, and so on.Yet making the switch to OO design
does require a different type of investment.

Changing from FORTRAN to COBOL, or even to C, requires that you learn a new
language; however, making the move from COBOL to C++, C# .NET,Visual Basic
.NET, or Java requires that you learn a new thought process.This is where the overused
phrase OO paradigm rears its ugly head.When moving to an OO language, you must go
through the investment of learning OO concepts and the corresponding thought process
first. If this paradigm shift does not take place, one of two things will happen: Either the
project will not truly be OO in nature (for example, it will use C++ without using OO
constructs), or the project will be a complete object-disoriented mess.

Three important things you can do to develop a good sense of the OO thought
process are covered in this chapter:

n Knowing the difference between the interface and implementation
n Thinking more abstractly
n Giving the user the minimal interface possible

We have already touched upon some of these concepts in Chapter 1, and here we now go
into much more detail.

Knowing the Difference Between the Interface
and the Implementation
As we saw in Chapter 1, one of the keys to building a strong OO design is to understand
the difference between the interface and the implementation.Thus, when designing a
class, what the user needs to know and what the user does not need to know are of vital
importance.The data hiding mechanism inherent with encapsulation is the means by
which nonessential data is hidden from the user.

Caution
Do not confuse the concept of the interface with terms like graphical user interface (GUI). Al-
though a GUI is, as its name implies, an interface, the term interfaces, as used here, is
more general in nature and is not restricted to a graphical interface.

Remember the toaster example in Chapter 1? The toaster, or any appliance for that mat-
ter, is simply plugged into the interface, which is the electrical outlet—see Figure 2.1.All
appliances gain access to the required electricity by complying with the correct interface:
the electrical outlet.The toaster doesn’t need to know anything about the implementation
or how the electricity is produced. For all the toaster cares, a coal plant or a nuclear plant
could produce the electricity—the appliance does not care which, as long as the interface
works correctly and safely.

As another example, consider an automobile.The interface between you and the car
includes components such as the steering wheel, gas pedal, brake, and ignition switch. For
most people, aesthetic issues aside, the main concern when driving a car is that the car
starts, accelerates, stops, steers, and so on.The implementation, basically the stuff that you

39Knowing the Difference Between the Interface and the Implementation

Requesting
Object

Interface
Implementation

Figure 2.1 Power plant revisited.

don’t see, is of little concern to the average driver. In fact, most people would not even be
able to identify certain components, such as the catalytic converter and gasket. However,
any driver would recognize and know how to use the steering wheel because this is a
common interface. By installing a standard steering wheel in the car, manufacturers are as-
sured that the people in their target market will be able to use the system.

If, however, a manufacturer decided to install a joystick in place of the steering wheel,
most drivers would balk at this, and the automobile might not be a big seller (except for
some eclectic people who love bucking the trends). On the other hand, as long as the per-
formance and aesthetics didn’t change, the average driver would not notice if the manu-
facturer changed the engine (part of the implementation) of the automobile.

It must be stressed that the interchangeable engines must be identical in every way—as
far as the interface goes. Replacing a four-cylinder engine with an eight-cylinder engine
would change the rules and likely would not work with other components that interface
with the engine, just as changing the current from AC to DC would affect the rules in the
power plant example.

The engine is part of the implementation, and the steering wheel is part of the inter-
face.A change in the implementation should have no impact on the driver, whereas a
change to the interface might.The driver would notice an aesthetic change to the steering
wheel, even if it performs in a similar manner. It must be stressed that a change to the en-
gine that is noticeable by the driver breaks this rule. For example, a change that would re-
sult in noticeable loss of power is actually changing the interface.

What Users See
Interfaces also relate directly to classes. End users do not normally see any classes—they
see the GUI or command line. However, programmers would see the class interfaces. Class
reuse means that someone has already written a class. Thus, a programmer who uses a
class must know how to get the class to work properly. This programmer will combine many
classes to create a system. The programmer is the one who needs to understand the inter-
faces of a class. Therefore, when we talk about users in this chapter, we primarily mean de-
signers and developers—not necessarily end users. Thus, when we talk about interfaces in
this context, we are talking about class interfaces, not GUIs.

40 Chapter 2 How to Think in Terms of Objects

Properly constructed classes are designed in two parts—the interface and the implementa-
tion.

The Interface
The services presented to an end user comprise the interface. In the best case, only the
services the end user needs are presented. Of course, which services the user needs might
be a matter of opinion. If you put 10 people in a room and ask each of them to do an in-
dependent design, you might receive 10 totally different designs—and there is nothing
wrong with that. However, as a rule of thumb, the interface to a class should contain only
what the user needs to know. In the toaster example, the user only needs to know that the
toaster must be plugged into the interface (which in this case is the electrical outlet) and
how to operate the toaster itself.

Identifying the User
Perhaps the most important consideration when designing a class is identifying the audi-
ence, or users, of the class.

The Implementation
The implementation details are hidden from the user. One goal regarding the implemen-
tation should be kept in mind:A change to the implementation should not require a
change to the user’s code.This might seem a bit confusing, but this goal is at the heart of
the design issue. If the interface is designed properly, a change to the implementation
should not require a change to the user’s code. Remember that the interface includes the
syntax to call a method and return a value. If this interface does not change, the user does
not care whether the implementation is changed.As long as the programmer can use the
same syntax and retrieve the same value, that’s all that matters.

We see this all the time when using a cell phone.To make a call, the interface is simple—
we dial a number.Yet, if the provider changes equipment, they don’t change the way you
make a call.The interface stays the same regardless of how the implementation changes.
Actually, I can think of one situation when the provider did change the interface—when
my area code changed. Fundamental interface changes, like an area code change, do re-
quire the users to change behavior. Businesses try to keep these types of changes to a min-
imum, for some customers will not like the change or perhaps not put up with the hassle.

Recall that in the toaster example, although the interface is always the electric outlet,
the implementation could change from a coal power plant to a nuclear power plant with-
out affecting the toaster.There is one very important caveat to be made here:The coal or
nuclear plant must also conform to the interface specification. If the coal plant produces
AC power, but the nuclear plant produces DC power, there is a problem.The bottom line
is that both the user and the implementation must conform to the interface specification.

41Knowing the Difference Between the Interface and the Implementation

An Interface/Implementation Example
Let’s create a simple (if not very functional) database reader class.We’ll write some Java
code that will retrieve records from the database.As we’ve discussed, knowing your end
users is always the most important issue when doing any kind of design.You should do
some analysis of the situation and conduct interviews with end users, and then list the re-
quirements for the project.The following are some requirements we might want to use
for the database reader:

n We must be able to open a connection to the database.
n We must be able to close the connection to the database.
n We must be able to position the cursor on the first record in the database.
n We must be able to position the cursor on the last record in the database.
n We must be able to find the number of records in the database.
n We must be able to determine whether there are more records in the database (that

is, if we are at the end).
n We must be able to position the cursor at a specific record by supplying the key.
n We must be able to retrieve a record by supplying a key.
n We must be able to get the next record, based on the position of the cursor.

With these requirements in mind, we can make an initial attempt to design the database
reader class by creating possible interfaces for these end users.

In this case, the database reader class is intended for programmers who require use of a
database.Thus, the interface is essentially the application-programming interface (API) that
the programmer will use.These methods are, in effect, wrappers that enclose the function-
ality provided by the database system.Why would we do this? We explore this question in
much greater detail later in the chapter; the short answer is that we might need to cus-
tomize some database functionality. For example, we might need to process the objects so
that we can write them to a relational database.Writing this middleware is not trivial as far
as design and coding go, but it is a real-life example of wrapping functionality. More im-
portantly, we may want to change the database engine itself without having to change the
code. Figure 2.2 shows a class diagram representing a possible interface to the
DataBaseReader class.

Note that the methods in this class are all public (remember that there are plus signs
next to the names of methods that are public interfaces).Also note that only the interface
is represented; the implementation is not shown.Take a minute to determine whether this
class diagram generally satisfies the requirements outlined earlier for the project. If you
find out later that the diagram does not meet all the requirements, that’s okay; remember
that OO design is an iterative process, so you do not have to get it exactly right the first
time.

42 Chapter 2 How to Think in Terms of Objects

+open:void
+close:void
+goToFirst:void
+goToLast:void
+howManyRecords:int
+areThereMoreRecords:boolean
+positionRecord:void
+getRecord:String
+getNextRecord:String

DataBaseReader

Figure 2.2 A Unified Modeling Language class diagram for the
DataBaseReader class.

Public Interface
Remember that if a method is public, an application programmer can access it, and thus, it
is considered part of the class interface. Do not confuse the term interface with the keyword
interface used in Java and .NET—this term is discussed later.

For each of the requirements we listed, we need a corresponding method that provides the
functionality we want. Now you need to ask a few questions:

n To effectively use this class, do you, as a programmer, need to know anything else
about it?

n Do you need to know how the internal database code actually opens the database?
n Do you need to know how the internal database code physically positions itself over

a specific record?
n Do you need to know how the internal database code determines whether there are

any more records left?

On all counts the answer is a resounding no!You don’t need to know any of this informa-
tion.All you care about is that you get the proper return values and that the operations are
performed correctly. In fact, the application programmer will most likely be at least one
more abstract level away from the implementation.The application will use your classes to
open the database, which in turn will invoke the proper database API.

Minimal Interface
Although perhaps extreme, one way to determine the minimalist interface is to initially pro-
vide the user no public interfaces. Of course, the class will be useless; however, this forces
the user to come back to you and say, “Hey, I need this functionality.” Then you can negoti-
ate. Thus, you add interfaces only when it is requested. Never assume that the user needs
something.

43Knowing the Difference Between the Interface and the Implementation

Creating wrappers might seem like overkill, but there are many advantages to writing
them.To illustrate, there are many middleware products on the market today. Consider the
problem of mapping objects to a relational database.There are OO databases on the mar-
ket today that are perfect for OO applications. However, there is one small problem: Most
companies have years of data in legacy relational database systems. How can a company
embrace OO technologies and stay on the cutting edge while retaining its data in a rela-
tional database?

First, you can convert all your legacy, relational data to a brand-new OO database.
However, anyone who has suffered the acute (and chronic) pain of any data conversion
knows that this is to be avoided at all costs.Although these conversions can take large
amounts of time and effort, all too often they never work properly.

Second, you can use a middleware product to seamlessly map the objects in your appli-
cation code to a relational model.This is a much better solution as long as relational data-
bases are so prevalent.There might be an argument stating that OO databases are much
more efficient for object persistence than relational databases. In fact, many development
systems seamlessly provide this service.

Object Persistence
Object persistence refers to the concept of saving the state of an object so that it can be re-
stored and used at a later time. An object that does not persist basically dies when it goes
out of scope. For example, the state of an object can be saved in a database.

However, in the current business environment, relational-to-object mapping is a great so-
lution. Many companies have integrated these technologies. It is common for a company
to have a website front-end interface with data on a mainframe.

If you create a totally OO system, an OO database might be a viable (and better per-
forming) option; however, OO databases have not experienced anywhere near the growth
that OO languages have.

Standalone Application
Even when creating a new OO application from scratch, it might not be easy to avoid legacy
data. This is due to the fact that even a newly created OO application is most likely not a
standalone application and might need to exchange information stored in relational data-
bases (or any other data storage device, for that matter).

Let’s return to the database example. Figure 2.2 shows the public interface to the class, and
nothing else. Of course, when this class is complete, it will probably contain more meth-
ods, and it will certainly contain attributes. However, as a programmer using this class, you
do not need to know anything about these private methods and attributes.You certainly
don’t need to know what the code looks like within the public methods.You simply need
to know how to interact with the interfaces.

What would the code for this public interface look like (assume that we start with a
Oracle database example)? Let’s look at the open() method:

44 Chapter 2 How to Think in Terms of Objects

public void open(String Name){

/* Some application-specific processing */

/* call the Oracle API to open the database */

/* Some more application-specific processing */

};

In this case, you, wearing your programmer’s hat, realize that the open method requires
String as a parameter. Name, which represents a database file, is passed in, but it’s not im-
portant to explain how Name is mapped to a specific database for this example.That’s all
we need to know. Now comes the fun stuff—what really makes interfaces so great!

Just to annoy our users, let’s change the database implementation. Last night we trans-
lated all the data from an Oracle database to an SQLAnywhere database (we endured the
acute and chronic pain). It took us hours—but we did it.

Now the code looks like this:

public void open(String Name){

/* Some application-specific processing

/* call the SQLAnywhere API to open the database */

/* Some more application-specific processing */

};

To our great chagrin, this morning not one user complained.This is because even
though the implementation changed, the interface did not! As far as the user is con-
cerned, the calls are still the same.The code change for the implementation might have
required quite a bit of work (and the module with the one-line code change would have
to be rebuilt), but not one line of application code that uses this DataBaseReader class
needed to change.

Code Recompilation
Dynamically loaded classes are loaded at runtime—not statically linked into an executable
file. When using dynamically loaded classes, like Java and .NET do, no user classes would
have to be recompiled. However, in statically linked languages such as C++, a link is re-
quired to bring in the new class.

By separating the user interface from the implementation, we can save a lot of headaches
down the road. In Figure 2.3, the database implementations are transparent to the end
users, who see only the interface.

45Using Abstract Thinking When Designing Interfaces

Using Abstract Thinking When Designing
Interfaces
One of the main advantages of OO programming is that classes can be reused. In general,
reusable classes tend to have interfaces that are more abstract than concrete. Concrete in-
terfaces tend to be very specific, whereas abstract interfaces are more general. However,
simply stating that a highly abstract interface is more useful than a highly concrete inter-
face, although often true, is not always the case.

It is possible to write a very useful, concrete class that is not at all reusable.This hap-
pens all the time, and there is nothing wrong with it in some situations. However, we are
now in the design business, and want to take advantage of what OO offers us. So our goal
is to design abstract, highly reusable classes—and to do this we will design highly abstract
user interfaces.To illustrate the difference between an abstract and a concrete interface,
let’s create a taxi object. It is much more useful to have an interface such as “drive me to
the airport” than to have separate interfaces such as “turn right,”“turn left,”“start,”“stop,”
and so on because as illustrated in Figure 2.4, all the user wants to do is get to the airport.

When you emerge from your hotel, throw your bags into the back seat of the taxi, and
get in, the cabbie will turn to you and ask,“Where do you want to go?”You reply,“Please
take me to the airport.” (This assumes, of course, that there is only one major airport in
the city. In Chicago you would have to say,“Please take me to Midway Airport” or “Please
take me to O’Hare.”) You might not even know how to get to the airport yourself, and
even if you did, you wouldn’t want to have to tell the cabbie when to turn and which di-

Class
B

Oracle DB2 SQLAny

Interface

User
Code

User
Code

Figure 2.3 The interface.

46 Chapter 2 How to Think in Terms of Objects

Take me to the Airport

Abstract

TAXI

Figure 2.4 An abstract interface.

rection to turn, as illustrated in Figure 2.5. How the cabbie implements the actual drive is
of no concern to you, the passenger. (Of course, the fare might become an issue at some
point, if the cabbie cheats and takes you the long way to the airport.)

Turn Right

Not So Abstract

TAXI

Turn Left

Turn Right

Turn LeftTurn Left

Figure 2.5 A not-so-abstract interface.

47Giving the User the Minimal Interface Possible

Now, where does the connection between abstract and reuse come in? Ask yourself which
of these two scenarios is more reusable, the abstract or the not-so-abstract? To put it more
simply, which phrase is more reusable:“Take me to the airport,” or “Turn right, then right,
then left, then left, then left”? Obviously, the first phrase is more reusable.You can use it in
any city, whenever you get into a taxi and want to go to the airport.The second phrase
will only work in a specific case.Thus, the abstract interface “Take me to the airport” is
generally the way to go for a good, reusable OO design whose implementation would be
different in Chicago, New York, or Cleveland.

Giving the User the Minimal Interface Possible
When designing a class, the rule of thumb is to always provide the user with as little
knowledge of the inner workings of the class as possible.To accomplish this, follow these
simple rules:

n Give the users only what they absolutely need. In effect, this means the class has as
few interfaces as possible.When you start designing a class, start with a minimal in-
terface.The design of a class is iterative, so you will soon discover that the minimal
set of interfaces might not suffice.This is fine.

It is better to have to add interfaces because users really need it than to give the
users more interfaces than they need.There are times when it is problematic for the
user to have certain interfaces. For example, you don’t want an interface that pro-
vides salary information to all users—only the ones who need to know.

For the moment, let’s use a hardware example to illustrate our software example.
Imagine handing a user a PC box without a monitor or a keyboard. Obviously, the
PC would be of little use.You have just provided the user with the minimal set of
interfaces to the PC. Of course, this minimal set is insufficient, and it immediately
becomes necessary to add interfaces.

n Public interfaces define what the users can access. If you initially hide the entire
class from the user by making the interfaces private, when programmers start using
the class, you will be forced to make certain methods public—these methods thus
become the public interface.

n It is vital to design classes from a user’s perspective and not from an information sys-
tems viewpoint.Too often designers of classes (not to mention any other kind of
software) design the class to make it fit into a specific technological model. Even if
the designer takes a user’s perspective, it is still probably a technician user’s perspec-
tive, and the class is designed with an eye on getting it to work from a technology
standpoint and not from ease of use for the user.

n Make sure when you are designing a class that you go over the requirements and
the design with the people who will actually use it—not just developers.The class
will most likely evolve and need to be updated when a prototype of the system is
built.

48 Chapter 2 How to Think in Terms of Objects

Determining the Users
Let’s look again at the taxi example.We have already decided that the users are the ones
who will actually use the system.This said, the obvious question is who are the users?

The first impulse is to say the customers.This is only about half right.Although the cus-
tomers are certainly users, the cabbie must be able to successfully provide the service to
the customers. In other words, providing an interface that would, no doubt, please the cus-
tomer, like “Take me to the airport for free,” is not going to go over well with the cabbie.
Thus, in reality, to build a realistic and usable interface, both the customer and the cabbie
must be considered users.

For a software analogy, consider that users might want a programmer to provide a cer-
tain function. However, if the programmer finds the request technically impossible, the re-
quest can’t be satisfied, no matter how much the programmer wants to help.

In short, any object that sends a message to the taxi object is considered a user (and yes,
the users are objects, too). Figure 2.6 shows how the cabbie provides a service.

Looking Ahead
The cabbie is most likely an object as well.

Object Behavior
Identifying the users is only a part of the exercise.After the users are identified, you must
determine the behaviors of the objects. From the viewpoint of all the users, begin identi-
fying the purpose of each object and what it must do to perform properly. Note that
many of the initial choices will not survive the final cut of the public interface.These
choices are identified by gathering requirements using various methods such as UML
UseCases.

Environmental Constraints
In their book Object-Oriented Design in Java, Gilbert and McCarty point out that the envi-
ronment often imposes limitations on what an object can do. In fact, environmental con-
straints are almost always a factor. Computer hardware might limit software functionality.
For example, a system might not be connected to a network, or a company might use a

Cabbie Customer

TAXI

Engage Service:
As long as I don't pay too much!!

Provide Service:
As long as I make a profit

Figure 2.6 Providing services.

49Giving the User the Minimal Interface Possible

specific type of printer. In the taxi example, the cab cannot drive on a road if a bridge is
out, even if it provides a quicker way to the airport.

Identifying the Public Interfaces
With all the information gathered about the users, the object behaviors, and the environ-
ment, you need to determine the public interfaces for each user object. So think about
how you would use the taxi object:

n Get into the taxi.
n Tell the cabbie where you want to go.
n Pay the cabbie.
n Give the cabbie a tip.
n Get out of the taxi.

What do you need to do to use the taxi object?

n Have a place to go.
n Hail a taxi.
n Pay the cabbie money.

Initially, you think about how the object is used and not how it is built.You might dis-
cover that the object needs more interfaces, such as “Put luggage in the trunk” or “Enter
into a mindless conversation with the cabbie.” Figure 2.7 provides a class diagram that lists
possible methods for the Cabbie class.

As is always the case, nailing down the final interface is an iterative process. For each in-
terface, you must determine whether the interface contributes to the operation of the ob-
ject. If it does not, perhaps it is not necessary. Many OO texts recommend that each

+hailTaxi:void
+enterTaxi:void
+greetCabbie:void
+specifyDestination:void
+payCabbie:void
+tipCabbie:void
+leaveTaxi:void

Cabbie

Figure 2.7 The methods in a
cabbie class.

50 Chapter 2 How to Think in Terms of Objects

interface model only one behavior.This returns us to the question of how abstract we
want to get with the design. If we have an interface called enterTaxi(), we certainly do
not want enterTaxi() to have logic in it to pay the cabbie. If we do this, then not only is
the design somewhat illogical, but there is virtually no way that a user of the class can tell
what has to be done to simply pay the cabbie.

Identifying the Implementation
After the public interfaces are chosen, you need to identify the implementation.After the
class is designed and all the methods required to operate the class properly are in place,
the specifics of how to get the class to work are considered.

Technically, anything that is not a public interface can be considered the implementa-
tion.This means that the user will never see any of the methods that are considered part
of the implementation, including the method’s signature (which includes the name of the
method and the parameter list), as well as the actual code inside the method.

It is possible to have a private method that is used internally by the class.Any private
method is considered part of the implementation given that the user will never see it and
thus will not have access to it. For example, a class may have a changePassword()
method; however, the same class may have a private method that actually encrypts the
password.This method would be hidden from the user and called only from inside the
changePassword() method.

The implementation is totally hidden from the user.The code within public methods
is actually a part of the implementation because the user cannot see it. (The user should
only see the calling structure of an interface—not the code inside it.)

This means that, theoretically, anything that is considered the implementation might
change without affecting how the user interfaces with the class.This assumes, of course,
that the implementation is providing the answers the user expects.

Whereas the interface represents how the user sees the object, the implementation is
really the nuts and bolts of the object.The implementation contains the code that repre-
sents that state of an object.

Conclusion
In this chapter, we have explored three areas that can get you started on the path to
thinking in an OO way. Remember that there is no firm list of issues pertaining to the
OO thought process. Doing things in an OO way is more of an art than a science.Try to
think of your own ways to describe OO thinking.

In Chapter 3,“Advanced Object-Oriented Concepts,” we’ talk about the fact that the
object has a life cycle: It is born, it lives, and it dies.While it is alive, it might transition
through many different states. For example, a DataBaseReader object is in one state if the
database is open and another state if the database is closed. How this is represented de-
pends on the design of the class.

51References

References
Meyers, Scott. Effective C++, 3rd ed.Addison-Wesley Professional, 2005. Boston, MA.
Flower, Martin. UML Distilled, 3rd ed.Addison-Wesley Professional, 2003. Boston, MA.
Gilbert, Stephen, and Bill McCarty. Object-Oriented Design in Java.The Waite Group Press

(Pearson Education), 1998. Berkeley, CA.

This page intentionally left blank

3
Advanced

Object-Oriented Concepts

Chapters 1,“An Introduction to Object-Oriented Concepts,” and 2,“How to Think in
Terms of Objects,” cover the basics of object-oriented (OO) concepts. Before we embark
on our journey to learn some of the finer design issues relating to building an OO sys-
tem, we need to cover several more advanced OO concepts such as constructors, operator
overloading and multiple inheritance.We also will consider error-handling techniques, the
importance of understudying how scope applies to object-oriented design.

Some of these concepts might not be vital to understanding an OO design at a higher
level, but they are necessary to anyone actually involved in the design and implementation
of an OO system.

Constructors
Constructors are a new concept for people doing structured programming. Constructors do
not normally exist in non-OO languages such as COBOL, C and Basic. In the first two
chapters we alluded to special methods that are used to construct objects. In OO languages,
constructors are methods that share the same name as the class and have no return type.
For example, a constructor for the Cabbie class would look like this:

public Cabbie(){

/* code to construct the object */

}

The compiler will recognize that the method name is identical to the class name and
consider the method a constructor.

Caution
Note again that a constructor does not have a return value. If you provide a return value, the
compiler will not treat the method as a constructor.

54 Chapter 3 Advanced Object-Oriented Concepts

For example, if you include the following code in the class, the compiler will not consider
this a constructor because it has a return value—in this case an integer.

public int Cabbie(){

/* code to construct the object */

}

This syntax requirement can cause problems because this code will compile but will
not behave as expected.

When Is a Constructor Called?
When a new object is created, one of the first things that happens is that the constructor is
called. Check out the following code:

Cabbie myCabbie = new Cabbie();

The new keyword creates a new instance of the Cabbie class, thus allocating the re-
quired memory.Then the constructor itself is called, passing the arguments in the parame-
ter list.The constructor provides the developer the opportunity to attend to the
appropriate initialization.

Thus, the code new Cabbie() will instantiate a Cabbie object and call the Cabbie
method, which is the constructor.

What’s Inside a Constructor?
Perhaps the most important function of a constructor is to initialize the memory allocated
when the new keyword is encountered. In short, code included inside a constructor should
set the newly created object to its initial, stable, safe state.

For example, if you have a counter object with an attribute called count, you need to
set count to zero in the constructor:

count = 0;

Initializing Attributes
In structured programming, a routine named housekeeping (or initialization) is often used for
initialization purposes. Initializing attributes is a common function performed within a con-
structor.

The Default Constructor
If you write a class and do not include a constructor, the class will still compile, and you
can still use it. If the class provides no explicit constructor, a default constructor will be
provided. It is important to understand that at least one constructor always exists, regard-
less of whether you write a constructor yourself. If you do not provide a constructor, the
system will provide a default constructor for you.

Besides the creation of the object itself, the only action that a default constructor takes
is to call the constructor of its superclass. In many cases, the superclass will be part of the

55Constructors

language framework, like the Object class in Java. For example, if a constructor is not pro-
vided for the Cabbie class, the following default constructor is inserted:

public Cabbie(){

super();

}

If you were to de-compile the bytecode produced by the compiler, you would see this
code.The compiler actually inserts it.

In this case, if Cabbie does not explicitly inherit from another class, the Object class
will be the parent class. Perhaps the default constructor might be sufficient in some cases;
however, in most cases some sort of memory initialization should be performed. Regard-
less of the situation, it is good programming practice to always include at least one con-
structor in a class. If there are attributes in the class, it is always good practice to initialize
them.

Providing a Constructor
The rule of thumb is that you should always provide a constructor, even if you do not plan on
doing anything inside it. You can provide a constructor with nothing in it and then add to it
later. Although there is technically nothing wrong with using the default constructor provided
by the compiler, it is always nice to know exactly what your code looks like.

It is not surprising that maintenance becomes an issue here. If you depend on the default
constructor and then maintenance is performed on the class that added another construc-
tor, then the default constrictor is not created. In short, the default constructor is only
added if you don’t include one.As soon as you include just one, the default constructor is
not included.

Using Multiple Constructors
In many cases, an object can be constructed in more than one way.To accommodate this
situation, you need to provide more than one constructor. For example, let’s consider the
Count class presented here:

public class Count {

int count;

public Count(){

count = 0;

}

}

On the one hand, we simply want to initialize the attribute count to count to zero:We
can easily accomplish this by having a constructor initialize count to zero as follows:

public Count(){

count = 0;

}

56 Chapter 3 Advanced Object-Oriented Concepts

public String getRecord(int key)

Signature = getRecord (int key)
method name + parameter list

Signature

Figure 3.1 The components
of a signature.

On the other hand, we might want to pass an initialization parameter that allows count
to be set to various numbers:

public Count (int number){

count = number;

}

This is called overloading a method (overloading pertains to all methods, not just con-
structors). Most OO languages provide functionality for overloading a method.

Overloading Methods
Overloading allows a programmer to use the same method name over and over, as long as
the signature of the method is different each time.The signature consists of the method
name and a parameter list (see Figure 3.1).

Thus, the following methods all have different signatures:

public void getCab();

// different parameter list

public void getCab (String cabbieName);

// different parameter list

public void getCab (int numberOfPassengers);

Signatures
Depending on the language, the signature may or may not include the return type. In Java
and C#, the return type is not part of the signature. For example, the following methods
would conflict even though the return types are different:

public void getCab (String cabbieName);

public int getCab (String cabbieName);

The best way to understand signatures is to write some code and run it through the compiler.

57Constructors

By using different signatures, you can construct objects differently depending on the con-
structor used.

Using UML to Model Classes
Let’s return to the database reader example we used earlier in Chapter 2. Consider that we
have two ways we can construct a database reader:

n Pass the name of the database and position the cursor at the beginning of the database.
n Pass the name of the database and the position within the database where we want

the cursor to position itself.

Figure 3.2 shows a class diagram for the DataBaseReader class. Note that the diagram lists
two constructors for the class.Although the diagram shows the two constructors, without
the parameter list, there is no way to know which constructor is which.To distinguish the
constructors, you can look at the corresponding code listed below.

No Return Type
Notice that in this class diagram the constructors do not have a return type. All other meth-
ods besides constructors must have return types.

Here is a code segment of the class that shows its constructors and the attributes that the
constructors initialize (see Figure 3.3):

public class DataBaseReader {

String dbName;

int startPosition;

// initialize just the name

dbName:String
startPosition:int

+DataBaseReader:
+DataBaseReader:
+open:void
+close:void
+goToFirst:void
+goToLast:void
+howManyRecords:int
+areThereMoreRecords:boolean
+positionRecord:void
+getRecord:String
+getNextRecord:String

DataBaseReader

Figure 3.2 The
DataBaseReader class

diagram.

58 Chapter 3 Advanced Object-Oriented Concepts

Class

Object

Object

Object

Class class = new Object();

Constructor

Figure 3.3 Creating a new object.

public DataBaseReader (String name){

dbName = name;

startPosition = 0;

};

// initialize the name and the position

public DataBaseReader (String name, int pos){

dbName = name;

startPosition = pos;

};

.. // rest of class

}

Note how startPosition is initialized in both cases. If the constructor is not passed
the information via the parameter list, it is initialized to a default value, like 0.

How the Superclass Is Constructed
When using inheritance, you must know how the parent class is constructed. Remember
that when you use inheritance, you are inheriting everything about the parent.Thus, you
must become intimately aware of all the parent’s data and behavior.The inheritance of an

59Constructors

attribute is fairly obvious. However, how a constructor is inherited is not as obvious.After
the new keyword is encountered and the object is allocated, the following steps occur (see
Figure 3.4):

1. The first thing that happens inside the constructor is that the constructor of the
class’s superclass is called. If there is no explicit call to the superclass constructor, the
default is called automatically; however, you can see the code in the bytecodes.

2. Then each class attribute of the object is initialized.These are the attributes that are
part of the class definition (instance variables), not the attributes inside the construc-
tor or any other method (local variables). In the DataBaseReader code presented
earlier, the integer startPosition is an instance variable of the class.

3. Then the rest of the code in the constructor executes.

The Design of Constructors
As we have already seen, when designing a class, it is good practice to initialize all the at-
tributes. In some languages, the compiler provides some sort of initialization.As always,
don’t count on the compiler to initialize attributes! In Java, you cannot use an attribute
until it is initialized. If the attribute is first set in the code, make sure that you initialize the
attribute to some valid condition—for example, set an integer to zero.

Constructors are used to ensure that the application is in a stable state (I like to call it a
“safe” state). For example, initializing an attribute to zero, when it is intended for use as a
denominator in a division operation, might lead to an unstable application.You must take

Constructing an Object

Super
Class

User
Class

DBReader
Class

Call DBReader Constuctor

Call SuperClass Constructor First

Figure 3.4 Constructing an object.

60 Chapter 3 Advanced Object-Oriented Concepts

into consideration the fact that a division by zero is an illegal operation. Initializing to
zero is not always the best policy.

During the design, it is good practice to identify a stable state for all attributes and
then initialize them to this stable state in the constructor.

Error Handling
It is rare for a class to be written perfectly the first time. In most, if not all, situations,
things will go wrong.Any developer who does not plan for problems is courting danger.

Assuming that your code has the ability to detect and trap an error condition, you can
handle the error in several different ways: On page 223 of their book Java Primer Plus,
Tyma,Torok, and Downing state that there are three basic solutions to handling problems
that are detected in a program: fix it, ignore the problem by squelching it, or exit the run-
time in some graceful manner. On page 139 of their book Object-Oriented Design in Java,
Gilbert and McCarty expand on this theme by adding the choice of throwing an excep-
tion:

n Ignore the problem—not a good idea!
n Check for potential problems and abort the program when you find a problem.
n Check for potential problems, catch the mistake, and attempt to fix the problem.
n Throw an exception. (Often this is the preferred way to handle the situation.)

These strategies are discussed in the following sections.

Ignoring the Problem
Simply ignoring a potential problem is a recipe for disaster.And if you are going to ignore
the problem, why bother detecting it in the first place? The bottom line is that you should
not ignore the problem.The primary directive for all applications is that the application
should never crash. If you do not handle your errors, the application will eventually termi-
nate ungracefully or continue in a mode that can be considered an unstable state. In the
latter case, you might not even know you are getting incorrect results for some period of
time.

Checking for Problems and Aborting the Application
If you choose to check for potential problems and abort the application when a problem is
detected, the application can display a message indicating that there is a problem. In this
case the application gracefully exits, and the user is left staring at the computer screen,
shaking her head and wondering what just happened.Although this is a far superior option
to ignoring the problem, it is by no means optimal. However, this does allow the system to
clean up things and put itself in a more stable state, such as closing files.

61Error Handling

Checking for Problems and Attempting to Recover
Checking for potential problems, catching the mistake, and attempting to recover is a far
superior solution than simply checking for problems and aborting. In this case, the prob-
lem is detected by the code, and the application attempts to fix itself.This works well in
certain situations. For example, consider the following code:

if (a = = 0)

a=1;

c = b/a;

It is obvious that if the if statement is not included in the code, and a zero makes its
way to the divide statement, you will get a system exception because you cannot divide by
zero. By catching the exception and setting the variable a to 1, at least the system will not
crash. However, setting a to 1 might not be a proper solution.You might need to prompt
the user for the proper input value.

A Mix of Error Handling Techniques
Despite the fact that this type of error handling is not necessarily object-oriented in nature, I
believe that it has a valid place in OO design. Throwing an exception (discussed in the next
section) can be expensive in terms of overhead. Thus, although exceptions are a great de-
sign choice, you will still want to consider other error handling techniques, depending on your
design and performance needs.

Although this means of error checking is preferable to the previous solutions, it still has a
few potentially limiting problems. It is not always easy to determine where a problem first
appears.And it might take a while for the problem to be detected. In any event, it is be-
yond the scope of this book to explain error handling in great detail. However, it is im-
portant to design error handling into the class right from the start.

Throwing an Exception
Most OO languages provide a feature called exceptions. In the most basic sense, exceptions
are unexpected events that occur within a system. Exceptions provide a way to detect
problems and then handle them. In Java, C# and C++, exceptions are handled by the key-
words catch and throw.This might sound like a baseball game, but the key concept here
is that a specific block of code is written to handle a specific exception.This solves the
problem of trying to figure out where the problem started and unwinding the code to the
proper point.

Here is the structure for a try/catch block:

try {

// possible nasty code

} catch(Exception e) {

62 Chapter 3 Advanced Object-Oriented Concepts

// code to handle the exception

}

If an exception is thrown within the try block, the catch block will handle it.When
an exception is thrown while the block is executing, the following occurs:

1. The execution of the try block is terminated.

2. The catch clauses are checked to determine whether an appropriate catch block
for the offending exception was included. (There might be more than one catch
clause per try block.)

3. If none of the catch clauses handle the offending exception, it is passed to the next
higher-level try block. (If the exception is not caught in the code, the system ulti-
mately catches it, and the results are unpredictable, i.e., an application crash.)

4. If a catch clause is matched (the first match encountered), the statements in the
catch clause are executed.

5. Execution then resumes with the statement following the try block.

Suffice to say that exceptions are an important advantage for OO programming lan-
guages. Here is an example of how an exception is caught in Java:

try {

// possible nasty code

count = 0;

count = 5/count;

} catch(ArithmeticException e) {

// code to handle the exception

System.out.println(e.getMessage());

count = 1;

}

System.out.println(“The exception is handled.”);

Exception Granularity
You can catch exceptions at various levels of granularity. You can catch all exceptions or just
check for specific exceptions, such as arithmetic exceptions. If your code does not catch an
exception, the Java runtime will—and it won’t be happy about it!

In this example, the division by zero (because count is equal to 0) within the try block
will cause an arithmetic exception. If the exception was generated (thrown) outside a try
block, the program would most likely have been terminated. However, because the excep-
tion was thrown within a try block, the catch block is checked to see whether the spe-

63The Concept of Scope

cific exception (in this case, an arithmetic exception) was planned for. Because the catch
block contains a check for the arithmetic exception, the code within the catch block is
executed, thus setting count to 1.After the catch block executes, the try/catch block is
exited, and the message The exception is handled. appears on the Java console (see
Figure 3.5).

If you had not put ArithmeticException in the catch block, the program would likely
have crashed.You can catch all exceptions by using the following code:

try {

// possible nasty code

} catch(Exception e) {

// code to handle the exception

}

The Exception parameter in the catch block is used to catch any exception that
might be generated within a try block.

Bulletproof Code
It’s a good idea to use a combination of the methods described here to make your program
as bulletproof to your user as possible.

The Concept of Scope
Multiple objects can be instantiated from a single class. Each of these objects has a unique
identity and state.This is an important point. Each object is constructed separately and is
allocated its own separate memory. However, some attributes and methods may, if properly
declared, be shared by all the objects instantiated from the same class, thus sharing the
memory allocated for these class attributes and methods.

A Shared Method
A constructor is a good example of a method that is shared by all instances of a class.

System

System Throws
Exception

Your
Application

Application Catches
and Handles

Exception

System

System is
Happy

Figure 3.5 Catching an exception.

64 Chapter 3 Advanced Object-Oriented Concepts

Methods represent the behaviors of an object; the state of the object is represented by at-
tributes.There are three types of attributes:

n Local attributes
n Object attributes
n Class attributes

Local Attributes
Local attributes are owned by a specific method. Consider the following code:

public class Number {

public method1() {

int count;

}

public method2() {

}

}

The method method1 contains a local variable called count.This integer is accessible
only inside method1.The method method2 has no idea that the integer count even exists.

At this point, we introduce a very important concept: scope.Attributes (and methods)
exist within a particular scope. In this case, the integer count exists within the scope of
method1. In Java, C#, and C++, scope is delineated by curly braces ({}). In the Number
class, there are several possible scopes—just start matching the curly braces.

The class itself has its own scope. Each instance of the class (that is, each object) has its
own scope. Both method1 and method2 have their own scopes as well. Because count lives
within method1’s curly braces, when method1 is invoked, a copy of count is created.When
method1 terminates, the copy of count is removed.

For some more fun, look at this code:

public class Number {

public method1() {

int count;

}

public method2() {

int count;

}

}

65The Concept of Scope

In this example, there are two copies of an integer count in this class. Remember
that method1 and method2 each has its own scope.Thus, the compiler can tell which
copy of count to access simply by recognizing which method it is in.You can think of it
in these terms:

method1.count;

method2.count;

As far as the compiler is concerned, the two attributes are easily differentiated, even
though they have the same name. It is almost like two people having the same last name,
but based on the context of their first names, you know that they are two separate individ-
uals.

Object Attributes
There are many design situations in which an attribute must be shared by several methods
within the same object. In Figure 3.6, for example, three objects have been constructed
from a single class. Consider the following code:

public class Number {

int count; // available to both method1 and method2

public method1() {

Memory
Allocation

attribute count

Memory
Allocation

attribute count

Memory
Allocation

attribute count

Object
number1

Object
number2

Object
number3

Object Attributes

Figure 3.6 Object attributes.

66 Chapter 3 Advanced Object-Oriented Concepts

count = 1;

}

public method2() {

count = 2;

}

}

In this case, the class attribute count is declared outside the scope of both method1 and
method2. However, it is within the scope of the class.Thus, count is available to both
method1 and method2. (Basically, all methods in the class have access to this attribute.) No-
tice that the code for both methods is setting count to a specific value.There is only one
copy of count for the entire object, so both assignments operate on the same copy in
memory. However, this copy of count is not shared between different objects.

To illustrate, let’s create three copies of the Number class:

Number number1 = new Number();

Number number2 = new Number();

Number number3 = new Number();

Each of these objects—number1, number2, and number3—is constructed separately and
is allocated its own resources.There are actually three separate instances of the integer
count.When number1 changes its attribute count, this in no way affects the copy of
count in object number2 or object number3. In this case, integer count is an object attribute.

You can play some interesting games with scope. Consider the following code:

public class Number {

int count;

public method1() {

int count;

}

public method2() {

int count;

}

}

In this case, there are actually three totally separate memory locations with the name of
count for each object.The object owns one copy, and method1() and method2() each
have their own copy.

To access the object variable from within one of the methods, say method1(), you can
use a pointer called this in the C-based languages:

public method1() {

67The Concept of Scope

int count;

this.count = 1;

}

Notice that there is some code that looks a bit curious:

this.count = 1;

The selection of the word this as a keyword is perhaps unfortunate. However, we
must live with it.The use of the this keyword directs the compiler to access the object
variable count and not the local variables within the method bodies.

Note
The keyword this is a reference to the current object.

Class Attributes
As mentioned earlier, it is possible for two or more objects to share attributes. In Java, C#,
and C++, you do this by making the attribute static:

public class Number {

static int count;

public method1() {

}

}

By declaring count as static, this attribute is allocated a single piece of memory for all
objects instantiated from the class.Thus, all objects of the class use the same memory loca-
tion for count. Essentially, each class has a single copy, which is shared by all objects of that
class (see Figure 3.7).This is about as close to global data as we get in OO design.

There are many valid uses for class attributes; however, you must be aware of potential
synchronization problems. Let’s instantiate two Count objects:

Count Count1 = new Count();

Count Count2 = new Count();

For the sake of argument, let’s say that the object Count1 is going merrily about its
way and is using count as a means to keep track of the pixels on a computer screen.This
is not a problem until the object Count2 decides to use attribute count to keep track of
sheep.The instant that Count2 records its first sheep, the data that Count1 was saving is
lost.

68 Chapter 3 Advanced Object-Oriented Concepts

Class Attribute

Object 1

Object 2

Memory
allocation
attribute

count

Object 3

Figure 3.7 Class attributes.

Operator Overloading
Some OO languages allow you to overload an operator. C++ is an example of one such
language. Operator overloading allows you to change the meaning of an operator. For ex-
ample, when most people see a plus sign, they assume it represents addition. If you see the
equation

X = 5 + 6;

you expect that X would contain the value 11.And in this case, you would be correct.
However, there are times when a plus sign could represent something else. For exam-

ple, in the following code:

String firstName = “Joe”, lastName = “Smith”;

String Name = firstName + “ “ + lastName;

You would expect that Name would contain Joe Smith.The plus sign here has been
overloaded to perform string concatenation.

String Concatenation
String concatenation is when two separate strings are combined to create a new, single
string.

69Multiple Inheritance

In the context of strings, the plus sign does not mean addition of integers or floats, but
concatenation of strings.

What about matrix addition? You could have code like this:

Matrix a, b, c;

c = a + b;

Thus, the plus sign now performs matrix addition, not addition of integers or floats.
Overloading is a powerful mechanism. However, it can be downright confusing for people
who read and maintain code. In fact, developers can confuse themselves.To take this to an
extreme, it would be possible to change the operation of addition to perform subtraction.
Why not? Operator overloading allows you to change the meaning of an operator.Thus, if
the plus sign were changed to perform subtraction, the following code would result in an
X value of –1.

x = 5 + 6;

More recent OO languages like Java and .NET do not allow operator overloading.
While these languages do not allow the option of overloading operators; the languages
themselves do overload the plus sign for string concatenation, but that’s about it.The de-
signers of Java must have decided that operator overloading was more of a problem than it
was worth. If you must use operator overloading in C++, take care not to confuse the
people who will use the class by documenting and commenting properly.

Multiple Inheritance
We cover inheritance in much more detail in Chapter 7,“Mastering Inheritance and
Composition.” However, this is a good place to begin discussing multiple inheritance,
which is one of the more powerful and challenging aspects of class design.

As the name implies, multiple inheritance allows a class to inherit from more than one
class. In practice, this seems like a great idea. Objects are supposed to model the real
world, are they not? And there are many real-world examples of multiple inheritance. Par-
ents are a good example of multiple inheritance. Each child has two parents—that’s just
the way it is. So it makes sense that you can design classes by using multiple inheritance. In
some OO languages, such as C++, you can.

However, this situation falls into a category similar to operator overloading. Multiple
inheritance is a very powerful technique, and in fact, some problems are quite difficult to
solve without it. Multiple inheritance can even solve some problems quite elegantly. How-
ever, multiple inheritance can significantly increase the complexity of a system, both for
the programmer and the compiler writers.

As with operator overloading, the designers of Java and .NET decided that the in-
creased complexity of allowing multiple inheritance far outweighed its advantages, so they
eliminated it from the language. In some ways, the Java and .NET language construct of

70 Chapter 3 Advanced Object-Oriented Concepts

interfaces compensates for this; however, the bottom line is that Java and .NET do not al-
low conventional multiple inheritance.

Behavioral and Implementation Inheritance
Java and .NET interfaces are a mechanism for behavioral inheritance, whereas abstract
classes are used for implementation inheritance. The bottom line is that Java and .NET inter-
faces provide interfaces, but no implementation, whereas abstract classes may provide both
interfaces and implementation. This topic is covered in great detail in Chapter 8, “Frame-
works and Reuse: Designing with Interfaces and Abstract Classes.”

Object Operations
Some of the most basic operations in programming become more complicated when
you’re dealing with complex data structures and objects. For example, when you want to
copy or compare primitive data types, the process is quite straightforward. However, copy-
ing and comparing objects is not quite as simple. On page 34 of his book Effective C++,
Scott Meyers devotes an entire section to copying and assigning objects.

Classes and References
The problem with complex data structures and objects is that they might contain references.
Simply making a copy of the reference does not copy the data structures or the object that it
references. In the same vein, when comparing objects, simply comparing a pointer to an-
other pointer only compares the references—not what they point to.

The problems arise when comparisons and copies are performed on objects. Specifically,
the question boils down to whether you follow the pointers or not. Regardless, there
should be a way to copy an object.Again, this is not as simple as it might seem. Because
objects can contain references, these reference trees must be followed to do a valid copy (if
you truly want to do a deep copy).

Deep Versus Shallow Copies
A deep copy is when all the references are followed and new copies are created for all refer-
enced objects. There might be many levels involved in a deep copy. For objects with refer-
ences to many objects, which in turn might have references to even more objects, the copy
itself can create significant overhead. A shallow copy would simply copy the reference and
not follow the levels. Gilbert and McCarty have a good discussion about what shallow and
deep hierarchies are on page 265 of Object-Oriented Design in Java in a section called “Pre-
fer a Tree to a Forest.”

To illustrate, in Figure 3.8, if you just do a simple copy of the object (called a bitwise copy),
any object that the primary object references will not be copied—only the references will
be copied.Thus, both objects (the original and the copy) will point to the same objects.
To perform a complete copy, in which all reference objects are copied, you have to write
the code to create all the sub-objects.

This problem also manifests itself when comparing objects.As with the copy function,
this is not as simple as it might seem. Because objects contain references, these reference

71References

Class
B

Class
C

Class
A

Copy of
Class A

References
Class B

References
Class B

References
Class C References

Class C

Figure 3.8 Following object
references.

trees must be followed to do a valid comparison of objects. In most cases, languages pro-
vide a default mechanism to compare objects.As is usually the case, do not count on the
default mechanism.When designing a class, you should consider providing a comparison
function in your class that you know will behave as you want it to.

Conclusion
This chapter covered a number of advanced OO concepts that, although perhaps not vital
to a general understanding of OO concepts, are quite necessary in higher-level OO tasks,
such as designing a class. In Chapter 4,“The Anatomy of a Class,” we start looking specifi-
cally at how to design and build a class.

References
Meyers, Scott. Effective C++, 3rd ed.Addison-Wesley Professional, 2005. Boston, MA.
Gilbert, Stephen, and Bill McCarty. Object-Oriented Design in Java.The Waite Group Press,

1998. Berkeley, CA.
Tyma, Paul, Gabriel Torok, and Troy Downing. Java Primer Plus.The Waite Group, 1996.

Berkeley, CA.

72 Chapter 3 Advanced Object-Oriented Concepts

Example Code Used in This Chapter
The following code is presented in C# .NET and VB .NET.These examples correspond
to the Java code that is listed inside the chapter itself.

The TestNumber Example: C# .NET

using System;

namespace TestNumber

{

class Program

{

public static void Main()

{

Number number1 = new Number();

Number number2 = new Number();

Number number3 = new Number();

}

}

public class Number

{

int count = 0; // available to both method1 and method2

public void method1()

{

count = 1;

}

public void method2()

{

count = 2;

}

}

}

73Example Code Used in This Chapter

The TestNumber Example: VB .NET

Module TestNumber

Sub Main()

Dim number1 As New Number()

Dim number2 As New Number()

Dim number3 As New Number()

System.Console.ReadLine()

End Sub

End Module

Public Class Number

Dim count As Integer

Function method1() As VariantType

count = 1

End Function

Function method2() As VariantType

count = 2

End Function

End Class

This page intentionally left blank

4
The Anatomy of a Class

In previous chapters we have covered the fundamental object-oriented (OO) concepts
and determined the difference between the interface and the implementation. No matter
how well you think out the problem of what should be an interface and what should be
part of the implementation, the bottom line always comes down to how useful the class is
and how it interacts with other classes.A class should never be designed in a vacuum, for
as might be said, no class is an island.When objects are instantiated, they almost always in-
teract with other objects.An object can also be part of another object or be part of an in-
heritance hierarchy.

This chapter examines a simple class and then takes it apart piece by piece along with
guidelines that you should consider when designing classes.We will continue using the
cabbie example presented in Chapter 2,“How to Think in Terms of Objects.

Each of the following sections covers a particular aspect of a class.Although not all
components are necessary in every class, it is important to understand how a class is de-
signed and constructed.

Note
This class is meant for illustration purposes only. Some of the methods are not fleshed out
(meaning that there is no implementation) and simply present the interface—in part to em-
phasize that the interface is the primary part of the initial design.

The Name of the Class
The name of the class is important for several reasons.The obvious reason is to identify
the class itself. Beyond simple identification, the name must be descriptive.The choice of a
name is important because it provides information about what the class does and how it
interacts within larger systems.

The name is also important when considering language constraints. For example, in
Java, the public class name must be the same as the file name. If the names do not match,
the application won’t work.

Figure 4.1 shows the class that will be examined. Plain and simple, the name of the
class in our example, Cabbie, is the name located after the keyword class:

public class Cabbie {

}

76 Chapter 4 The Anatomy of a Class

Comments

Constructors

Accessor Methods (Public Interfaces)

A Public Interface

/*
This class defines a cabbie and assigns a cab

*/
public class Cabbie{ Class Name

//Place name of Company Here
private static String companyName = “Blue Cab Company”;

//.Name of the Cabbie
private String Name;

//Car assigned to Cabbie
private Cab myCab;

// Default Constructor for the Cabbie
public Cabbie() {

name = null;
myCab = null;

}

// Name Initializing Constructor for the Cabbie
public Cabbie(String iName, String serialNumber){

Name = iName;
myCab = new Cab(serialNumber);

}

// Set the Name of the Cabbie
public void setName(String iName) {

Name = iName;
}

// Get the Name of the Company
public static string getName(){

return Name;
}

// Get the Name of the Cabbie
public static String getCompanyName(){

return companyName;
}

public void giveDestination(){
}

private void turnRight(){
}

private void turnLeft(){
}

}

Attributes

Private Implementation

Figure 4.1 Our sample class.

77Attributes

Using Java Syntax
Remember that the convention for this book is to use Java syntax. The syntax will be similar
but somewhat different in C#, .NET, VB .NET, or C++, and totally different in other OO lan-
guages such as Smalltalk.

The class Cabbie name is used whenever this class is instantiated.

Comments
Regardless of the syntax of the comments used, they are vital to understanding the func-
tion of a class. In Java, C# .NET, and C++, there are two kinds of comments.

The Extra Java and C# Comment Style
In Java and C#, there are actually three types of comments. In Java, the third comment type
(/** */) relates to a form of documentation that Java provides. We will not cover this type
of comment in this book. C# provides similar syntax to create XML documents.

The first comment is the old C-style comment, which uses /* (slash-asterisk) to open the
comment and */ (asterisk-slash) to close the comment.This type of comment can span
more than one line, and it’s important not to forget to use the pair of open and close
comment symbols for each comment. If you miss the closing comment (*/), some of your
code might be tagged as a comment and ignored by the compiler. Here is an example of
this type of comment used with the Cabbie class:

/*

This class defines a cabbie and assigns a cab

*/

The second type of comment is the // (slash-slash), which renders everything after it,
to the end of the line, a comment.This type of comment spans only one line, so you don’t
need to remember to use a close comment symbol, but you do need to remember to con-
fine the comment to just one line and not include any live code after the comment. Here
is an example of this type of comment used with the Cabbie class:

// Name of the cabbie

Attributes
Attributes represent the state of the object because they store the information about the
object. For our example, the Cabbie class has attributes that store the name of the com-
pany, the name of the cabbie, and the cab assigned to the cabbie. For example, the first at-
tribute stores the name of the company:

private static String companyName = “Blue Cab Company”;

78 Chapter 4 The Anatomy of a Class

Object 1

Object 2

Object 3

Object 4 Object 5

company Name

Memory Allocation

Figure 4.2 Object memory allocation.

Note here the two keywords private and static.The keyword private signifies that
a method or variable can be accessed only within the declaring object.

Hiding as Much Data as Possible
All the attributes in this example are private. This is in keeping with the design principle of
keeping the interface design as minimal as possible. The only way to access these attrib-
utes is through the method interfaces provided (which we explore later in this chapter).

The static keyword signifies that there will be only one copy of this attribute for all the
objects instantiated by this class. Basically, this is a class attribute. (See Chapter 3,“Ad-
vanced Object-Oriented Concepts,” for more discussion on class attributes.) Thus, even if
500 objects are instantiated from the Cabbie class, there will be only one copy in memory
of the companyName attribute (see Figure 4.2).

The second attribute, name, is a string that stores the name of the cabbie:

private String name;

This attribute is also private so that other objects cannot access it directly.They must
use the interface methods.

The myCab attribute is a reference to another object.The class, called Cab, holds infor-
mation about the cab, such as its serial number and maintenance records:

private Cab myCab;

79Constructors

Passing a Reference
It is likely that the Cab object was created by another object. Thus, the object reference
would be passed to the Cabbie object. However, for the sake of this example, the Cab is
created within the Cabbie object. Likewise, for the purposes of this example, we are not re-
ally interested in the internals of the Cab object.

Note that at this point, only a reference to a Cab object is created; there is no memory al-
located by this definition.

Constructors
This Cabbie class contains two constructors.We know they are constructors because they
have the same name as the class: Cabbie.The first constructor is the default constructor:

public Cabbie() {

name = null;

myCab = null;

}

Technically, this is not a default constructor.The compiler will provide a default con-
structor if you do not specify a constructor for this, or any, class. By definition, the reason
it is called a default constructor here is because it is a constructor with no arguments. If
you provide a constructor with arguments, the system will identify that you have provided
a constructor and thus will not provide a default constructor.The rule is that the default
constructor is only provided if you provide no constructors in your code.

In this constructor, the attributes Name and myCab are set to null:

name = null;

myCab = null;

The Nothingness of null
In many programming languages, the value null represents a value of nothing. This might
seem like an esoteric concept, but setting an attribute to nothing is a useful programming
technique. Checking a variable for null can identify whether a value has been properly ini-
tialized. For example, you might want to declare an attribute that will later require user input.
Thus, you can initialize the attribute to null before the user is actually given the opportunity
to enter the data. By setting the attribute to null (which is a valid condition), you can check
whether an attribute has been properly set.

As we know, it is always a good idea to initialize attributes in the constructors. In the same
vein, it’s a good programming practice to then test the value of an attribute to see whether
it is null.This can save you a lot of headaches later if the attribute or object was not set
properly. For example, if you use the myCab reference before a real object is assigned to it,
you will most likely have a problem. If you set the myCab reference to null in the con-
structor, you can later check to see whether myCab is still null when you attempt to use

80 Chapter 4 The Anatomy of a Class

it.An exception might be generated if you treat an un-initialized reference as if it were
properly initialized.

The second constructor provides a way for the user of the class to initialize the Name
and myCab attributes:

public Cabbie(String iName, String serialNumber) {

name = iName;

myCab = new Cab(serialNumber);

}

In this case, the user would provide two strings in the parameter list of the constructor
to properly initialize attributes. Notice that the myCab object is actually instantiated in this
constructor:

myCab = new Cab(serialNumber);

As a result of executing this line of code, the storage for a Cab object is allocated.
Figure 4.3 illustrates how a new instance of a Cab object is referenced by the attribute
myCab. Using two constructors in this example demonstrates a common use of method
overloading. Notice that the constructors are all defined as public.This makes sense be-
cause in this case, the constructors are obvious members of the class interface. If the con-
structors were private, other objects couldn’t access them—objects that want to instantiate
a Cab object.

Accessors
In most, if not all, examples in this book, the attributes are defined as private so that any
other objects cannot access the attributes directly. It would be ridiculous to create an ob-
ject in isolation that does not interact with other objects —for we want to share appropri-

Cabbie

The Cabbie Object References
an Actual Cab Object

myCab = new Cab (serialNumber);

Cab

TAXI

Figure 4.3 The Cabbie object referencing an actual cab object.

81Accessors

ate information. Isn’t it necessary to inspect and sometimes change another class’s attrib-
ute? The answer is yes, of course.There are times when an object needs to access another
object’s attributes; however, it does not need to do it directly.

A class should be very protective of its attributes. For example, you do not want object
A to have the capability to inspect or change the attributes of object B without object B
having control.There are several reasons for this; the most important reasons really boil
down to data integrity and efficient debugging.

Assume that there is a bug in the Cab class.You have tracked the problem to the Name at-
tribute. Somehow it is getting overwritten, and garbage is turning up in some name
queries. If Name were public and any class could change it, you would have to go searching
through all the possible code, trying to find places that reference and change Name. How-
ever, if you let only a Cabbie object change Name, you’d only have to look in the Cabbie

class.This access is provided by a type of method called an accessor. Sometimes accessors are
referred to as getters and setters, and sometimes they’re simply called get() and set(). By
convention, in this book we name the methods with the set and get prefixes, as in the fol-
lowing:

// Set the Name of the Cabbie

public void setName(String iName) {

name = iName;

}

// Get the Name of the Cabbie

public String getName() {

return name;

}

In this code snippet, a Supervisor object must ask the Cabbie object to return its
name (see Figure 4.4).The important point here is that the Supervisor object can’t
simply retrieve the information on its own; it must ask the Cabbie object for the infor-
mation.This concept is important at many levels. For example, you might have a
setAge() method that checks to see whether the age entered was 0 or below. If the age
is less than 0, the setAge() method can refuse to set this incorrect value. In general, the
setters are used to ensure a level of data integrity.

This is also an issue of security.You may have sensitive data, like passwords or payroll
information that you want to control access to.Thus, accessing data via getters and setters
provides the ability to use mechanisms like password checks and other validation tech-
niques.This greatly increases the integrity of the data.

Notice that the getCompanyName method is declared as static, as a class method; class
methods are described in more detail in Chapter 3. Remember that the attribute
companyName is also declared as static.A method, like an attribute, can be declared
static to indicate that there is only one copy of the method for the entire class.

82 Chapter 4 The Anatomy of a Class

Supervisor

“Can I have your name please?”

get Name()

The Supervisor Object Must Ask
The Cabbie Object to Return Its Name

Cabbie

Figure 4.4 Asking for information.

Objects
Actually, there isn’t a physical copy of each non-static method for each object. Each object
would point to the same physical code. However, from a conceptual level, you can think of
objects as being wholly independent and having their own attributes and methods.

The following code fragment illustrates how to define a static method, and Figure 4.5
shows how more than one object points to the same code.

Static Attributes
If an attribute is static, and the class provides a setter for that attribute, any object that in-
vokes the setter will change the single copy. Thus, the value for the attribute will change for
all objects.

Object 1

Object 2

Object 3

Object 4 Object 5

//Get the Name of the Cabbie
public static String getCompanyName() {
 return companyName;
}

Memory Allocation

Figure 4.5 Method memory allocation.

83Private Implementation Methods

// Get the Name of the Cabbie

public static String getCompanyName() {

return companyName;

}

Public Interface Methods
Both the constructors and the accessor methods are declared as public and are part of the
public interface.They are singled out because of their specific importance to the con-
struction of the class. However, much of the real work is provided in other methods.As
mentioned in Chapter 2, the public interface methods tend to be very abstract, and the im-
plementation tends to be more concrete. For this class, we provide a method called
giveDestination that is the public interface for the user to describe where she wants to go:

public void giveDestination (){

}

What is inside of this method is not important at this time.The main point here is that
this is a public method, and it is part of the public interface to the class.

Private Implementation Methods
Although all the methods discussed so far in this chapter are defined as public, not all the
methods in a class are part of the public interface. Some methods in a class may be hidden
from other classes.These methods are declared as private:

private void turnRight(){

}

private void turnLeft() {

}

These private methods are simply meant to be part of the implementation and not the pub-
lic interface.You might ask who invokes these methods, if no other class can.The answer is sim-
ple—you might have already surmised that these methods are called internally from the class
itself. For example, these methods could be called from within the method giveDestination:

public void giveDestination (){

.. some code

turnRight();

turnLeft();

.. some more code

}

84 Chapter 4 The Anatomy of a Class

As another example, you may have an internal method that provides encryption that
you only will use from within the class itself. In short, this encryption method can’t be
called from outside the instantiated object itself.

The point here is that private methods are strictly part of the implementation and are
not accessible by other classes.

Conclusion
In this chapter we have gotten inside a class and described the fundamental concepts nec-
essary for understanding how a class is built.Although this chapter takes a practical ap-
proach to discussing classes, Chapter 5,“Class Design Guidelines,” covers the class from a
general design perspective.

References
Flower, Martin. UML Distilled, 3rd ed.Addison-Wesley Professional, 2003. Boston, MA.
Gilbert, Stephen, and Bill McCarty. Object-Oriented Design in Java.The Waite Group Press,

1998. Berkeley, CA.
Tyma, Paul, Gabriel Torok, and Troy Downing. Java Primer Plus.The Waite Group, 1996.

Berkeley, CA.

Example Code Used in This Chapter
The following code is presented in C# .NET and VB .NET.These examples correspond
to the Java code that is listed inside the chapter itself.

The TestCab Example: C# .NET

using System;

namespace ConsoleApplication1

{

class TestPerson

{

public static void Main()

{

Cabbie joe = new Cabbie(“Joe”, “1234”);

Console.WriteLine(joe.Name);

Console.ReadLine();

}

}

public class Cabbie

{

85Example Code Used in This Chapter

private string strName;

private Cab myCab;

public Cabbie() {

name = null;

myCab = null;

}

public Cabbie(string iName, string serialNumber) {

name = iName;

myCab = new Cab(serialNumber);

}

//Methods

public String Name

{

get { return strName; }

set { strName = value; }

}

}

public class Cab

{

private string serialNumber;

public Cab (string sn) {

serialNumber = sn;

}

}

}

The TestCab Example: VB .NET

Module TestCabbie

Sub Main()

86 Chapter 4 The Anatomy of a Class

Dim joe As New Cabbie(“Joe”, 1234)

joe.Name = “joe”

Console.WriteLine(joe.Name)

Console.ReadLine()

End Sub

End Module
Public Class Cabbie

Dim strName As String

Sub New()

strName = “ “

End Sub

Sub New(ByVal iName As String, ByVal serialNumber As String)

strName = iName
Dim myCab As New Cab(serialNumber)

End Sub

Public Property Name() As String
Get

Return strName
End Get
Set(ByVal value As String)

strName = value
End Set

End Property

End Class
Public Class Cab

Dim serialNumber As String

Sub New(ByVal val As String)

serialNumber = val

End Sub

End Class

5
Class Design Guidelines

As we have already discussed, OO programming supports the idea of creating classes
that are complete packages, encapsulating the data and behavior of a single entity. So, a
class should represent a logical component, such as a taxicab.

This chapter presents several suggestions for designing solid classes. Obviously, no list
such as this can be considered complete.You will undoubtedly add many guidelines to
your personal list as well as incorporate useful guidelines from other developers.

Modeling Real World Systems
One of the primary goals of object-oriented (OO) programming is to model real-world
systems in ways similar to the ways in which people actually think. Designing classes is
the object-oriented way to create these models. Rather than using a structured, or top-
down, approach, where data and behavior are logically separate entities, the OO approach
encapsulates the data and behavior into objects that interact with each other.We no
longer think of a problem as a sequence of events or routines operating on separate data
files.The elegance of this mindset is that classes literally model real-world objects and
how these objects interact with other real-world objects.

These interactions occur in a way similar to the interactions between real-world ob-
jects, such as people.Thus, when creating classes, you should design them in a way that
represents the true behavior of the object. Let’s use the cabbie example from previous
chapters.The Cab class and the Cabbie class model a real-world entity.As illustrated in
Figure 5.1, the Cab and the Cabbie objects encapsulate their data and behavior, and they
interact through each other’s public interfaces.

When moving to OO development for the first time, many people tend to still think
in a structured way. One of the primary mistakes is to create a class that has behavior but
no class data. In effect, they are creating a set of functions or subroutines in the structured
model.This is not what you want to do because it doesn’t take advantage of the power of
encapsulation.

88 Chapter 5 Class Design Guidelines

Cabbie Cab

TAXI

Figure 5.1 A cabbie and a
cab are real-world objects.

Note
One of the better books pertaining to class design guidelines and suggestions is Effective C++:
50 Specific Ways to Improve Your Programs and Designs by Scott Meyers. It offers important in-
formation about program design in a very concise manner.

Identifying the Public Interfaces
It should be clear by now that perhaps the most important issue when designing a class is
to keep the public interface to a minimum.The entire purpose of building a class is to
provide something useful and concise. On page 109 of their book Object-Oriented Design
in Java, Gilbert and McCarty state that “the interface of a well-designed object describes
the services that the client wants accomplished.” If a class does not provide a useful service
to a user, it should not have been built in the first place.

The Minimum Public Interface
Providing the minimum public interface makes the class as concise as possible.The goal is
to provide the user with the exact interface to do the job right. If the public interface is
incomplete (that is, there is missing behavior), the user will not be able to do the complete
job. If the public interface is not properly restricted (that is, the user has access to behavior
that is unnecessary or even dangerous), problems can result in the need for debugging, and
even trouble with system integrity and security can surface.

Creating a class is a business proposition, and as with all steps in the design process, it is
very important that the users are involved with the design right from the start and
throughout the testing phase. In this way, the utility of the class, as well as the proper inter-
faces, will be assured.

Extending the Interface
Even if the public interface of a class is insufficient for a certain application, object technol-
ogy easily allows the capability to extend and adapt this interface by means of inheritance.
In short, if designed with inheritance in mind, a new class can inherit from an existing class
and create a new class with an extended interface.

To illustrate, consider the cabbie example once again. If other objects in the system need
to get the name of a cabbie, the Cabbie class must provide a public interface to return its
name; this is the getName() method.Thus, if a Supervisor object needs a name from a

89Designing Robust Constructors (and Perhaps Destructors)

Supervisor

“Can I have your name please?”

getName()

Cabbie

Figure 5.2 The public interface specifies how the objects interact.

Cabbie object, it must invoke the getName() method from the Cabbie object. In effect,
the supervisor is asking the cabbie for its name (see Figure 5.2).

Users of your code need to know nothing about its internal workings.All they need to
know is how to instantiate and use the object. In short, provide them a way to get there
but hide the details.

Hiding the Implementation
The need for hiding the implementation has already been covered in great detail.Whereas
identifying the public interface is a design issue that revolves around the users of the class,
the implementation should not involve the users at all. Of course, the implementation
must provide the services that the user needs, but how these services are actually per-
formed should not be made apparent to the user.A class is most useful if the implementa-
tion can change without affecting the users. For example, a change to the implementation
should not necessitate a change in user’s application code.

In the cabbie example, the Cabbie class might contain behavior pertaining to how it
eats breakfast. However, the cabbie’s supervisor does not need to know what the cabbie has
for breakfast.Thus, this behavior is part of the implementation of the Cabbie object and
should not be available to other objects in this system (see Figure 5.3). Gilbert and Mc-
Carty state that the prime directive of encapsulation is that “all fields shall be private.” In
this way, none of the fields in a class is accessible from other objects.

Designing Robust Constructors (and Perhaps
Destructors)
When designing a class, one of the most important design issues involves how the class
will be constructed. Constructors are discussed in Chapter 3,“Advanced Object-Oriented
Concepts.” Revisit this discussion if you need a refresher on guidelines for designing con-
structors.

90 Chapter 5 Class Design Guidelines

Supervisor

“What did you have for breakfast?”

Cabbie

Figure 5.3 Objects don’t need to know some implementation details.

First and foremost, a constructor should put an object into an initial, safe state.This in-
cludes issues such as attribute initialization and memory management.You also need to
make sure the object is constructed properly in the default condition. It is normally a
good idea to provide a constructor to handle this default situation.

In languages that include destructors, it is of vital importance that the destructors in-
clude proper clean-up functions. In most cases, this clean-up pertains to releasing system
memory that the object acquired at some point. Java and .NET reclaim memory automat-
ically via a garbage collection mechanism. In languages such as C++, the developer must
include code in the destructor to properly free up the memory that the object acquired
during its existence. If this function is ignored, a memory leak will result.

Memory Leaks
When an object fails to properly release the memory that it acquired during an object’s life
cycle, the memory is lost to the entire operating system as long as the application that cre-
ated the object is executing. For example, suppose multiple objects of the same class are
created and then destroyed, perhaps in some sort of loop. If these objects fail to release
their memory when they go out of scope, this memory leak slowly depletes the available
pool of system memory. At some point, it is possible that enough memory will be consumed
that the system will have no available memory left to allocate. This means that any applica-
tion executing in the system would be unable to acquire any memory. This could put the ap-
plication in an unsafe state and even lock up the system.

Designing Error Handling into a Class
As with the design of constructors, designing how a class handles errors is of vital impor-
tance. Error handling is discussed in detail in Chapter 3.

It is virtually certain that every system will encounter unforeseen problems.Thus, it is
not a good idea to simply ignore potential errors.The developer of a good class (or any
code, for that matter) anticipates potential errors and includes code to handle these condi-
tions when they are encountered.

The rule of thumb is that the application should never crash.When an error is encoun-
tered, the system should either fix itself and continue, or exit gracefully without losing any
data that’s important to the user.

91Designing with Reuse in Mind

Documenting a Class and Using Comments
The topic of comments and documentation comes up in every book and article, in every
code review, and in every discussion you have about good design. Unfortunately, com-
ments and good documentation are often not taken seriously, or even worse, they are ig-
nored.

Most developers know that they should thoroughly document their code, but they
don’t usually want to take the time to do it.The bottom line is that a good design is prac-
tically impossible without good documentation practices.At the class level, the scope
might be small enough that a developer can get away with shoddy documentation. How-
ever, when the class gets passed to someone else to extend and/or maintain, or it becomes
part of a larger system (which is what should happen), a lack of proper documentation and
comments can be lethal.

Many people have said all of this before. One of the most crucial aspects of a good de-
sign, whether it’s a design for a class or something else, is to carefully document the
process. Implementations such as Java and .NET provide special comment syntax to facili-
tate the documentation process. Check out Chapter 4,“The Anatomy of a Class” for the
appropriate syntax.

Too Much Documentation
Be aware that overcommenting can be a problem as well. Too much documentation and/or
commenting can become noise and may defeat the purpose of the documentation in the
first place. Unfocused documentation is, unfortunately, often ignored.

Building Objects with the Intent to Cooperate
In Chapter 6,“Designing with Objects,” we discuss many of the issues involved in design-
ing a system.We can safely say that almost no class lives in isolation. In most cases, there is
no reason to build a class if it is not going to interact with other classes.This is simply a
fact in the life of a class.A class will service other classes; it will request the services of
other classes, or both. In later chapters we discuss various ways that classes interact with
each other.

In the cabbie example, the cabbie and the supervisor are not standalone entities; they
interact with each other at various levels (see Figure 5.4).

When designing a class, make sure you are aware of how other objects will interact
with it.

Designing with Reuse in Mind
Objects can be reused in different systems, and code should be written with reuse in
mind. For example, when a Cabbie class is developed and tested, it can be used anywhere
you need a cabbie.To make a class usable in various systems, the class must be designed
with reuse in mind.This is where much of the thought is required in the design process.
Attempting to figure out all the possible scenarios in which a Cabbie object must operate
is not a trivial task.

92 Chapter 5 Class Design Guidelines

Supervisor

“Can you tell
me your

name please?”

“No Problem”

getName()

return(Name)

Cabbie

Objects provide services to convey
information to other objects.

Figure 5.4 Objects should
request information.

Designing with Extensibility in Mind
Adding new features to a class might be as simple as extending an existing class, adding a
few new methods, and modifying the behavior of others. It is not necessary to rewrite
everything.This is where inheritance comes into play. If you have just written a Person
class, you must consider the fact that you might later want to write an Employee class, or a
Vendor class.Thus, having Employee inherit from Person might be the best strategy; in
this case, the Person class is said to be extensible.You do not want to design Person so that
it contains behavior that prevents it from being extended by classes such as Employee or
Vendor (assuming, of course, that in your design you really intend for other classes to ex-
tend Person). For example, you would not want to code functionality into an Employee
class that is specific to supervisory functions. If you did, and then a class that does not re-
quire supervisory functionality inherited from Employee, you would have a problem.

This point touches on the abstraction guideline discussed earlier. Person should con-
tain only the data and behaviors that are specific to a person. Other classes can then sub-
class it and inherit appropriate data and behaviors.

What Attributes and Methods Can Be Static?
It is important to decide what attributes and methods can be declared as static. Revisit the
discussions in Chapter 3 on using the static keyword to understand how to design these
into your classes—these attributes and methods are shared by all objects of a class.

Making Names Descriptive
Earlier we discussed the use of proper documentation and comments. Following a naming
convention for your classes, attributes, and methods is a similar subject.There are many
naming conventions, and the convention you choose is not as important as choosing one
and sticking to it. However, when you choose a convention, make sure that when you cre-
ate classes, attributes, and method names, you not only follow the convention, but also
make the names descriptive.When someone reads the name, he should be able to tell from

93Designing with Extensibility in Mind

the name what the object represents.These naming conventions are often dictated by the
coding standards at various organizations.

Good Naming
Make sure that a naming convention makes sense. Often, people go overboard and create
conventions that might make sense to them, but are totally incomprehensible to others.
Take care when forcing other to conform to a convention. Make sure that the conventions
are sensible and that everyone involved understands the intent behind them.

Making names descriptive is a good development practice that transcends the various de-
velopment paradigms.

Abstracting Out Nonportable Code
If you are designing a system that must use nonportable code (that is, the code will only
run on a specific hardware platform), you should abstract this code out of the class. By ab-
stracting out, we mean isolating the nonportable code in its own class or at least its own
method (a method that can be overridden). For example, if you are writing code to access
a serial port of particular hardware, you should create a wrapper class to deal with it.Your
class should then send a message to the wrapper class to get the information or services it
needs. Do not put the system-dependent code into your primary class (see Figure 5.5).

If the class moves to another hardware system, the way to access the serial port changes, or
you want to go to a parallel port, the code in your primary class does not have to change.
The only place the code needs to change is in the wrapper class.

Providing a Way to Copy and Compare Objects
Chapter 3 discussed the issue of copying and comparing objects. It is important to under-
stand how objects are copied and compared.You might not want, or expect, a simple bit-
wise copy or compare operation.You must make sure that your class behaves as expected,

ClassA

Serial Port
Wrapper

Serial
Port

Please Write to Serial Port

Figure 5.5 A serial port wrapper.

94 Chapter 5 Class Design Guidelines

and this means you have to spend some time designing how objects are copied and com-
pared.

Keeping the Scope as Small as Possible
Keeping the scope as small as possible goes hand-in-hand with abstraction and hiding the
implementation.The idea is to localize attributes and behaviors as much as possible. In this
way, maintaining, testing, and extending a class are much easier.

Scope and Global Data
Minimizing the scope of global variables is a good programming style and is not specific to
OO programming. Global variables are allowed in structured development, yet they can get
dicey. In fact, there really is no global data in OO development. Static attributes and meth-
ods are shared among objects of the same class; however, they are not available to objects
not of the class.

For example, if you have a method that requires a temporary attribute, keep it local. Con-
sider the following code:

public class Math {

int temp=0;

public int swap (int a, int b) {

temp = a;

a=b;

b=temp;

return temp;

}

}

What is wrong with this class? The problem is that the attribute temp is only needed
within the scope of the swap() method.There is no reason for it to be at the class level.
Thus, you should move temp within the scope of the swap() method:

public class Math {

public int swap (int a, int b) {

int temp=0;

temp = a;

a=b;

b=temp;

95Designing with Extensibility in Mind

return temp;

}

}

This is what is meant by keeping the scope as small as possible.

A Class Should Be Responsible for Itself
In a training class based on their book, Java Primer Plus,Tyma,Torok, and Downing propose
the class design guideline that all objects should be responsible for acting on themselves
whenever possible. Consider trying to print a circle.

To illustrate, let’s use a non-OO example. In this example, the print command is passed
a Circle as an argument and prints it (see Figure 5.6):

print(circle);

The functions print, draw, and others need to have a case statement (or something
like an if/else structure) to determine what to do for the given shape passed. In this
case, a separate print routine for each shape could be called.

printCircle(circle);

printSquare(square);

Every time you add a new shape, all the functions need to add the shape to their case
statements.

switch (shape) {

case 1: printCircle(circle); break;

case 2: printSquare(square); break;

case 3: printTriangle(triangle); break;

default: System.out.println(“Invalid shape.”);break;

}

StarCircle
Rectangle

Choose a Shape and Print

print_Rectangle

print_Circle print_Star

Figure 5.6 A non-OO example of a print scenario.

96 Chapter 5 Class Design Guidelines

Star
print()

Circle
print()

Rectangle
print()

A Shape Knows How to Print Itself

Shape
print()

Figure 5.7 An OO example of a print scenario.

Now let’s look at an OO example. By using polymorphism and grouping the Circle into
a Shape category, Shape figures out that it is a Circle and knows how to print itself (see
Figure 5.7):

Shape.print(); // Shape is actually a Circle

Shape.print(); // Shape is actually a Square

The important thing to understand here is that the call is identical; the context of the
shape dictates how the system reacts.

Designing with Maintainability in Mind
Designing useful and concise classes promotes a high level of maintainability. Just as you
design a class with extensibility in mind, you should also design with future maintenance
in mind.

The process of designing classes forces you to organize your code into many (ideally)
manageable pieces. Separate pieces of code tend to be more maintainable than larger
pieces of code (at least that’s the idea). One of the best ways to promote maintainability is
to reduce interdependent code—that is, changes in one class have no impact or minimal
impact on other classes.

97Designing with Maintainability in Mind

Highly Coupled Classes
Classes that are highly dependent on one another are considered highly coupled. Thus, if a
change made to one class forces a change to another class, these two classes are consid-
ered highly coupled. Classes that have no such dependencies have a very low degree of cou-
pling. For more information on this topic, refer to The Object Primer by Scott Ambler.

If the classes are designed properly in the first place, any changes to the system should only
be made to the implementation of an object. Changes to the public interface should be
avoided at all costs.Any changes to the public interface will cause ripple effects through-
out all the systems that use the interface.

For example, if a change were made to the getName() method of the Cabbie class,
every single place in all systems that use this interface must be changed and recompiled.
Simply finding all these method calls is a daunting task.

To promote a high level of maintainability, keep the coupling level of your classes as
low as possible.

Using Iteration
As in most design and programming functions, using an iterative process is recommended.
This dovetails well into the concept of providing minimal interfaces.A good testing plan
quickly uncovers any areas where insufficient interfaces are provided. In this way, the
process can iterate until the class has the appropriate interfaces.This testing process is not
simply confined to coding.Testing the design with walkthroughs and other design review
techniques is very helpful.Testers’ lives are more pleasant when iterative processes are used,
because they are involved in the process early and are not simply handed a system that is
thrown over the wall at the end of the development process.

Testing the Interface
The minimal implementations of the interface are often called stubs. (Gilbert and McCarty
have a good discussion on stubs in Object-Oriented Design in Java.) By using stubs, you can
test the interfaces without writing any real code. In the following example, rather than
connect to an actual database, stubs are used to verify that the interfaces are working prop-
erly (from the user’s perspective—remember that interfaces are meant for the user).Thus,
the implementation is really not necessary at this point. In fact, it might cost valuable time
and energy to complete the implementation at this point because the design of the inter-
face will affect the implementation, and the interface is not yet complete.

In Figure 5.8, note that when a user class sends a message to the DataBaseReader class,
the information returned to the user class is provided by code stubs and not by the actual
database. (In fact, the database most likely does not exist yet.) When the interface is com-
plete and the implementation is under development, the database can then be connected
and the stubs disconnected.

98 Chapter 5 Class Design Guidelines

User
Class

Class

Method
Stubs

db.getRecord()

DataBaseReader

broken connection

DataBase

request data

receive data

Figure 5.8 Using stubs.

Here is a code example that uses an internal array to simulate a working database (albeit a
simple one):

public class DataBaseReader {

private String db[] = { “Record1”,

“Record2”,

“Record3”,

“Record4”,

“Record5”};

private boolean DBOpen = false;

private int pos;

public void open(String Name){

DBOpen = true;

}

public void close(){

DBOpen = false;

}

public void goToFirst(){

pos = 0;

}

public void goToLast(){

pos = 4;

}

public int howManyRecords(){

int numOfRecords = 5;

99Using Object Persistence

return numOfRecords;

}

public String getRecord(int key){

/* DB Specific Implementation */

return db[key];

}

public String getNextRecord(){

/* DB Specific Implementation */

return db[pos++];

}

}

Notice how the methods simulate the database calls.The strings within the array repre-
sent the records that will be written to the database.When the database is successfully in-
tegrated into the system, it will then be substituted for the array.

Keeping the Stubs Around
When you are done with the stubs, don’t delete them. Keep them in the code for possible
use later—just make sure the users can’t see them. In fact, in a well-designed program, your
test stubs should be integrated into the design and kept in the program for later use. In
short, design the testing right into the class!

As you find problems with the interface design, make changes and repeat the process until
you are satisfied with the result.

Using Object Persistence
Object persistence is another issue that must be addressed in many OO systems. Persistence
is the concept of maintaining the state of an object.When you run a program, if you don’t
save the object in some manner, the object simply dies, never to be recovered.These tran-
sient objects might work in some applications, but in most business systems, the state of
the object must be saved for later use.

Object Persistence
Although the topic of object persistence and the topics in the next section might not be con-
sidered true design guidelines, I believe that they must be addressed when designing
classes. I introduce them here to stress that they must be addressed early on when design-
ing classes.

In its simplest form, an object can persist by being serialized and written to a flat file.The
state-of-the-art technology is now XML-based.Although it is true that an object theoret-
ically can persist in memory as long as it is not destroyed, we will concentrate on storing

100 Chapter 5 Class Design Guidelines

persistent objects on some sort of storage device.There are three primary storage devices
to consider:

n Flat file system—You can store an object in a flat file by serializing the object.This
has very limited use.

n Relational database—Some sort of middleware is necessary to convert an object to
a relational model.

n OO database—This is the logical way to make objects persistent, but most compa-
nies have all their data in legacy systems and are just starting to explore object data-
bases. Even brand-new OO applications must usually interface with legacy data.

Serializing and Marshaling Objects
We have already discussed the problem of using objects in environments that were origi-
nally designed for structured programming.The middleware example, where we wrote
objects to a relational database, is one good example.We also touched on the problem of
writing an object to a flat file or sending it over a network.

To send an object over a wire (for example, to a file, over a network), the system must
deconstruct the object (flatten it out), send it over the wire, and then reconstruct it on the
other end of the wire.This process is called serializing an object.The act of actually send-
ing the object across a wire is called marshaling an object.A serialized object, in theory, can
be written to a flat file and retrieved later, in the same state in which it was written.

The major issue here is that the serialization and de-serialization must use the same
specifications. It is sort of like an encryption algorithm. If one object encrypts a string, the
object that wants to decrypt it must use the same encryption algorithm. Java provides an
interface called Serializable that provides this translation.

C# .Net and Visual Basic .NET provide the ISerializable interface, where the Mi-
crosoft documentation describes it as:Allows an object to control its own serialization and
deserialization.All classes that are meant to be seriallized must implement this interface.
The syntax for both C# .Net and Visual Basic .NET are listed in the following:

’ Visual Basic .NET

Public Interface ISerializable

// C# .NET

public interface ISerializable

One of the problems with serialization is that it is often proprietary.The use of XML,
which is discussed in detail later, is nonproprietary.

Conclusion
This chapter presents many guidelines that can help you in designing classes.This is by no
means a complete list of guidelines.You will undoubtedly come across additional guide-
lines as you go about your travels in OO design.

101Example Code Used in This Chapter

This chapter deals with design issues as they pertain to individual classes. However, we
have already seen that a class does not live in isolation. Classes must be designed to inter-
act with other classes.A group of classes that interact with each other is part of a system.
Ultimately, these systems provide value to end users. Chapter 6,“Designing with Ob-
jects,” covers the topic of designing complete systems.

References
Meyers, Scott. Effective C++, 3rd ed.Addison-Wesley Professional, 2005. Boston, MA.
Ambler, Scott. The Object Primer, 3rd ed. Cambridge University Press, 2004. Cambridge,

United Kingdom.
Jaworski, Jamie. Java 2 Platform Unleashed. Sams Publishing, 1999. Indianapolis.
Gilbert, Stephen, and Bill McCarty. Object-Oriented Design in Java.The Waite Group Press,

1998. Berkeley, CA.
Tyma, Paul, Gabriel Torok, and Troy Downing. Java Primer Plus.The Waite Group, 1996.

Berkeley, CA.
Jaworski, Jamie. Java 1.1 Developers Guide. Sams Publishing, 1997. Indianapolis.

Example Code Used in This Chapter
The following code is presented in C# .NET and VB .NET.These examples correspond
to the Java code that is listed inside the chapter itself.

The TestMath Example: C# .NET

public class Math {

public int swap (int a, int b) {

int temp=0;

temp = a;

a=b;

b=temp;

return temp;

}

}

class TestMath {

public static void Main() {

102 Chapter 5 Class Design Guidelines

Math myMath = new Math();

MyMath.swap(2,3);

}

}

The TestMath Example: VB .NET

Public Class Math

Function swap(ByVal a As Integer, ByVal b As Integer)

Dim temp As Integer

temp = a

a = b

b = temp

Return temp

End Function

End Class

Module Module1

Sub Main()

Dim myMath As New Math()

MyMath.sawp(2,3)

System.Console.ReadLine()

End Sub

End Module

6
Designing with Objects

When you use a software product, you expect it to behave as advertised. Unfortunately,
not all products live up to expectations.The problem is that when many products are pro-
duced, the majority of time and effort go into the engineering phase and not into the de-
sign phase.

Object-oriented (OO) design has been touted as a robust and flexible software devel-
opment approach.The truth is that you can create both good and bad OO designs just as
easily as you can create both good and bad non-OO designs. Don’t be lulled into a false
sense of security just because you are using a state-of-the-art design tool.You have to pay
attention to the overall design and invest the proper amount of time and effort to create
the best possible product.

In Chapter 5,“Class Design Guidelines,” we concentrated on designing good classes.
This chapter focuses on designing good systems. (A system can be defined as classes that
interact with each other.) Proper design practices have evolved throughout the history of
software development, and there is no reason you should not take advantage of the
blood, sweat, and tears of your software predecessors, whether they used OO technolo-
gies or not.

Design Guidelines
One fallacy is that there is one true design methodology.This is not the case.There is no
right or wrong way to create a design.There are many design methodologies available to-
day, and they all have their proponents. However, the primary issue is not which design
method to use, but simply whether to use a method at all.This can be expanded to the
entire software development process. Many organizations do not follow a standard soft-
ware development process.The most important factor in creating a good design is to find
a process that you and your organization can feel comfortable with. It makes no sense to
implement a design process that no one will follow.

Most books that deal with object-oriented technologies offer very similar strategies for
designing systems. In fact, except for some of the object-oriented specific issues involved,
much of the strategy is applicable to non–OO systems as well.

104 Chapter 6 Designing with Objects

Generally, a solid OO design process will generally include the following steps:

1. Doing the proper analysis

2. Developing a statement of work that describes the system

3. Gathering the requirements from this statement of work

4. Developing a prototype for the user interface

5. Identifying the classes

6. Determining the responsibilities of each class

7. Determining how the various classes interact with each other

8. Creating a high-level model that describes the system to be built

In this chapter, we are most interested in the last item on this list.The system, or object
model, is made up of class diagrams and class interactions.This model should represent
the system faithfully and be easy to understand and modify.We also need a notation for
the model.This is where the Unified Modeling Language (UML) comes in.As you know,
UML is not a design process, but a modeling tool.

The Ongoing Design Process
Despite the best intentions and planning, in all but the most trivial cases, the design is an
ongoing process. Even after a product is in testing, design changes will pop up. It is up to
the project manager to draw the line that says when to stop changing a product and adding
features.

It is important to understand that many design methodologies are available. One early
methodology, called the waterfall model, advocates strict boundaries between the various
phases. In this case, the design phase is completed before the implementation phase, which
is completed before the testing phase, and so on. In practice, the waterfall model has been
found to be unrealistic. Currently there are other design models, such as rapid prototyp-
ing, that promote a true iterative process. In these models, some implementation is at-
tempted prior to completing the design phase as a type of proof-of-concept. Despite the
recent aversion to the waterfall model, the goal behind the model is understandable. Com-
ing up with a complete and thorough design before starting to code is a sound practice.
You do not want to be in the release phase of the product and then decide to iterate
through the design phase again. Iterating across phase boundaries is unavoidable; however,
you should keep these iterations to a minimum (see Figure 6.1).

Simply put, the reasons to identify requirements early and keep design changes to a
minimum are as follows:

105Design Guidelines

Design

Implementation

Deployment

Catch as many problems
as possible here!!

Very Expensive

Not What The User Really Wanted

Figure 6.1 The waterfall method.

n The cost of a requirement/design change in the design phase is relatively small.
n The cost of a design change in the implementation phase is significantly higher.
n The cost of a design change after the deployment phase is astronomical when com-

pared to the first item.

Similarly, you would not want to start the construction of your dream house before the
architectural design was complete. If I said that the Golden Gate Bridge or the Empire
State Building was constructed without any consideration of design issues, you would
consider the statement absolutely crazy.Yet, you would most likely not find it crazy if I
told you that the software you were using might contain some design flaws, and in fact,
might not have been thoroughly tested.

In any case, it might be impossible to thoroughly test software, in the sense that ab-
solutely no bugs exist. But that does not mean that we shouldn’t try to weed out as many
bugs as possible. Bridges and software might not be directly comparable; however, software
must strive for the same level of engineering excellence as the “harder” engineering disci-
plines such as bridge building. Poor-quality software can be lethal—it’s not just wrong
numbers on payroll checks. For example, inferior software in medical equipment can kill
and maim people.

Safety Versus Economics
Would you want to cross a bridge that has not been inspected and tested? Unfortunately,
with many software packages, users are left with the responsibility of doing much of the test-
ing. This is very costly for both the users and the software providers. Unfortunately, short-
term economics often seem to be the primary factor in making project decisions.

106 Chapter 6 Designing with Objects

Package
#1

Package
#2

The Competitive Advantage

High
Quality &
Support

Poor
Quality &
Support

Figure 6.2 The competitive advantage.

Because customers seem to be willing to pay the price and put up with software of poor
quality, some software providers find that it is cheaper in the long run to let the customers
test the product rather than do it themselves. In the short term this might be true, but in
the long run it costs far more than the software provider realizes. Ultimately, the software
provider’s reputation will be damaged.

Some computer software companies are willing to use the beta test phase to let the
customers do testing—testing that should, theoretically, have been done before the beta
version ever reached the customer. Many customers are willing to take the risk of using
pre-release software simply because they are anxious to get the functionality the product
promises.

After the software is released, problems that have not been caught and fixed prior to re-
lease become much more expensive.To illustrate, consider the dilemma automobile com-
panies face when they are confronted with a recall. If a defect in the automobile is
identified and fixed before it is shipped (ideally before it is manufactured), it is much
cheaper than if all delivered automobiles have to be recalled and fixed one at a time. Not
only is this scenario very expensive, but it damages the reputation of the company. In an
increasingly competitive market, high-quality software, support services, and reputation are
the competitive advantage (see Figure 6.2).

Software Engineering
Although it might be acceptable to compare automobiles, bridges, and software when dis-
cussing quality, the legal implications of these topics cannot be compared, at least not yet.
The legal issues regarding software are currently being defined and revised. Currently dis-
claimers such as “we are not responsible for anything that this software does or causes to
happen” abound. Some other industries do not have this luxury. As the software legal
process evolves and matures, software manufacturers may well have to contend with these
issues. (As a standard disclaimer, in no way does this book attempt to offer any legal ad-
vice.)

107Design Guidelines

The following sections provide brief summaries of the items listed previously as being part
of the design process. Later in the chapter, we work through an example that explains in
greater detail each of these items.

Performing the Proper Analysis
There are a lot of variables involved in building a design and producing a software prod-
uct.The users must work hand-in-hand with the developers at all stages. In the analysis
phase, the users and the developers must do the proper research and analysis to determine
the statement of work, the requirements of the project, and whether to actually do the
project.The last point might seem a bit surprising, but it is important. During the analysis
phase, there must not be any hesitation to terminate the project if there is a valid reason to
do so.Too many times pet project status or some political inertia keeps a project going, re-
gardless of the obvious warning signs that cry out for project cancellation.Assuming that
the project is viable, the primary focus of the analysis phase is for everyone to learn the
systems (both the old and the proposed new one) and determine the system requirements.

Generic Software Principles
Most of these practices are not specific to OO. They apply to software development in general.

Developing a Statement of Work
The statement of work (SOW) is a document that describes the system.Although determin-
ing the requirements is the ultimate goal of the analysis phase, at this point the require-
ments are not yet in a final format.The SOW should give anyone who reads it a complete
understanding of the system. Regardless of how it is written, the SOW must represent the
complete system and be clear about how the system will look and feel.

The SOW contains everything that must be known about the system. Many customers
create a request-for proposal (RFP) for distribution, which is similar to the statement of
work.A customer creates an RFP that completely describes the system they want built
and releases it to multiple vendors.The vendors then use this document, along with what-
ever analysis they need to do, to determine whether they should bid on the project, and if
so, what price to charge.

Gathering the Requirements
The requirements document describes what the users want the system to do. Even though
the level of detail of the requirements document does not need to be of a highly technical
nature, the requirements must be specific enough to represent the true nature of the user’s
needs for the end product.The requirements document must be of sufficient detail for the
user to make educated judgments about the completeness of the system. It must also be of
specific detail for a design group to use the document to proceed with the design phase.

108 Chapter 6 Designing with Objects

Whereas the SOW is a document written in paragraph (even narrative) form, the re-
quirements are usually represented as a summary statement or presented as bulleted items.
Each individual bulleted item represents one specific requirement of the system.The re-
quirements are distilled from the statement of work.This process is shown later in the
chapter.

In many ways, these requirements are the most important part of the system.The SOW
might contain irrelevant material; however, the requirements are the final representation of
the system that must be implemented.All future documents in the software development
process will be based on the requirements.

Developing a Prototype of the User Interface
One of the best ways to make sure users and developers understand the system is to create
a prototype.A prototype can be just about anything; however, most people consider the
prototype to be a simulated user interface. By creating actual screens and screen flows, it is
easier for people to get an idea of what they will be working with and what the system
will feel like. In any event, a prototype will almost certainly not contain all the functional-
ity of the final system.

Most prototypes are created with an integrated development environment (IDE). How-
ever, drawing the screens on a whiteboard or even on paper might be all that is needed.
Traditionally,Visual Basic .NET is a good environment for prototyping, although other
languages are now in play. Remember that you are not necessarily creating business logic
(the logic/code behind the interface that actually does the work) when you build the pro-
totype, although it is possible to do so.The look and feel of the user interface are the major
concerns at this point. Having a good prototype can help immensely when identifying
classes.

Identifying the Classes
After the requirements are documented, the process of identifying classes can begin. From
the requirements, one straightforward way of identifying classes is to highlight all the
nouns.These tend to represent objects, such as people, places, and things. Don’t be too
fussy about getting all the classes right the first time.You might end up eliminating classes,
adding classes, and changing classes at various stages throughout the design. It is important
to get something down first.Take advantage of the fact that the design is an iterative
process.As in other forms of brainstorming, get something down initially, with the under-
standing that the final result might look nothing like the initial pass.

Determining the Responsibilities of Each Class
You need to determine the responsibilities of each class you have identified.This includes
the data that the class must store and what operations the class must perform. For exam-
ple, an Employee object would be responsible for calculating payroll and transferring the

109Case Study: A Blackjack Example

money to the appropriate account. It might also be responsible for storing the various
payroll rates and the account numbers of various banks.

Determining How the Classes Collaborate with Each Other
Most classes do not exist in isolation.Although a class must fulfill certain responsibilities,
many times it will have to interact with another class to get something it wants.This is
where the messages between classes apply. One class can send a message to another class
when it needs information from that class, or if it wants the other class to do something
for it.

Creating a Class Model to Describe the System
When all the classes are determined and the class responsibilities and collaborations are
listed, a class model that represents the complete system can be constructed.The class
model shows how the various classes interact within the system.

In this book, we are using UML to model the system. Several tools on the market use
UML and provide a good environment for creating and maintaining UML class models.
As we develop the example in the next section, we will see how the class diagrams fit into
the big picture and how modeling large systems would be virtually impossible without
some sort of good modeling notation and modeling tool.

Case Study: A Blackjack Example
The rest of this chapter is dedicated to a case study pertaining to the design process cov-
ered in the previous sections.Walking through a case study seems to be a standard exercise
in many object-oriented books that deal with OO design.

My first recollection of such an exercise was a graduate course that I took in which we
followed an example in the book Designing Object-Oriented Software by Wrifs-Brock,Wilk-
erson, and Weiner.The modeling technique was called CRC modeling, which will be de-
scribed later in this section.The case study was that of an automated teller machine
(ATM) system.The iterative process of identifying the classes and responsibilities using
CRC modeling was an eye-opening experience.The books, The Object Primer by Scott
Ambler and Object-Oriented Design in Java by Gilbert and McCarty, both go through simi-
lar exercises using CRC modeling and Use Cases. Let’s start an example that we expand
on throughout this chapter.

Because we want to have some fun, let’s create a program that simulates a game of
blackjack.We will assume that the statement of work has already been completed. In fact,
let’s say that a customer has come to you with a proposal that includes a very well-written
SOW and a rulebook about how to play blackjack.

According to the statement of work, the basic goal is to design a software system that
will simulate the game of blackjack (see Figure 6.3). Remember, we will not describe how

110 Chapter 6 Designing with Objects

A
J

J
Figure 6.3 A winning blackjack hand.

to implement (code) this game—we are only going to design the system. Ultimately, this
will culminate in the discovery of the classes, along with their responsibilities and collabo-
rations.After some intense analysis, we have determined the requirements of the system. In
this case, we will use a requirements summary statement; however, we could have pre-
sented the requirements as bullets. Because this is a small system, a requirements summary
statement might make more sense. However, in most large systems, a database of the re-
quirements (in bulleted list format) would be more appropriate. Here is the requirements
summary statement:

Requirements Summary Statement
The intended purpose of this software application is to implement a game of blackjack. In the
game of blackjack, one or more individuals play against the dealer (or house). Although there
might be more than one player, each player plays only against the dealer, and not any of the
other players.

From a player’s perspective, the goal of the game is to draw cards from the deck until the sum
of the face value of all the cards equals 21 or as close to 21 as possible, without exceeding
21. If the sum of the face value of all the cards exceeds 21, the player loses. If the sum of the
face value of the first two cards equals 21, the player is said to have blackjack. The dealer
plays the game along with the players. The dealer must deal the cards, present a player with ad-
ditional cards, show all or part of a hand, calculate the value of all or part of a hand, calculate
the number of cards in a hand, determine the winner, and start a new hand.

A card must know what its face value is and be able to report this value. The suit of the card is
of no importance (but it might be for another game in the future). All cards must be members of
a deck of cards. This deck must have the functionality to deal the next card, as well as report
how many cards remain in the deck.

During the game, a player can request that a card be dealt to his or her hand. The player must
be able to display the hand, calculate the face value of the hand, and determine the number of
cards in the hand. When the dealer asks the player whether to deal another card or to start a
new game, the player must respond.

111Case Study: A Blackjack Example

Each card has its own face value (suit does not factor into the face value). Aces count as 1 or
11. Face cards (Jack, Queen, King) each count as 10. The rest of the cards represent their face
values.

The rules of the game state that if the sum of the face value of the player’s cards is closer to
21 than the sum of the face value of the dealer’s cards, the player wins an amount equal to the
bet that was made. If the player wins with a blackjack, the player wins 3:2 times the bet made
(assuming that the dealer does not also have blackjack). If the sum of the face value of the
player’s cards exceeds 21, the bet is lost. Blackjack (an ace and a face card or a 10) beats
other combinations of 21.

If the player and the dealer have identical scores and at least 17, it is considered a draw, and
the player retains the bet.

As already mentioned, you could also have presented the requirements in bullet form, as
we did for the DataBaseReader class in Chapter 2,“How to Think in Terms of Objects.”

We want to take the perspective of the user. Because we are not interested in the im-
plementation, we’ll concentrate on the interface.Think back to the black-box example
from Chapter 1,“Introduction to Object-Oriented Concepts.”We only care about what
the system does, not how it does it.

The next step is to study the requirements summary statement and start identifying the
classes. Before we actually start this process, let’s define how we are going to model and
track the classes that we ultimately identify.

Using CRC Cards
Discovering classes is not a trivial process. In the blackjack example we are working on,
there will be relatively few classes because this is intended as an example. However, in
most business systems, there could be dozens of classes—perhaps 100 or more.There must
be a way to keep track of the classes as well as their interactions. One of the most popular
methods for identifying and categorizing classes is to use class-responsibility-collaboration
cards (CRC). Each CRC card represents a single class’s data attributes, responsibilities, and
collaborations.

For me, one of the more endearing qualities of CRC cards is that they can be non-
electronic (although there are computer applications around that model CRC cards). In
their basic sense, CRC cards are, quite literally, a collection of standard index cards.

You need to create three sections on each card:
n The name of the class
n The responsibilities of the class
n The collaborations of the class

The use of CRC cards conjures up scenes of dimly lit rooms—partially filled boxes of
pizza, pop cans, and multitudes of index cards strewn around the room.Although this
might be partially true, using CRC cards is a good technique because many of the people
involved with the design will not be developers.They might not even have much com-

112 Chapter 6 Designing with Objects

Class: classname
Responsibilities: Collaborations:

Figure 6.4 The format of a CRC card.

puter experience.Thus, using the index cards to discover classes (even a computerized
CRC system) is a technique that everyone can understand.There are certainly various
ways to perform these tasks, and many developers will use techniques that they are com-
fortable with. Figure 6.4 shows the format of a CRC card.

Identifying the Blackjack Classes
Remember that, in general, classes correspond to nouns, which are objects—people,
places, and things. If you go through the requirements summary statement and highlight
all the nouns, you have a good list from which you can start gleaning your objects.

Nouns
Although it is true that nouns generally indicate classes, nouns are not the only places
where classes are found.

As stated earlier, you shouldn’t get too hung up in getting things right the first time. Not
all the classes that you identify from the list of nouns or elsewhere will make it through to
the final cut. On the other hand, some classes that were not in your original list might ac-
tually make the final cut. Start feeling comfortable with the iterative process throughout
the design.And as always, make sure that you realize that there are always many ways to
solve a problem. It is often said that if you put 10 people in different rooms, they will
come up with 10 different designs, and they might all be equally good. In most cases, al-
though the designs might be different, ideally there will be significant overlap. Of course,
when working with a team, the final design will have to be a consensus, iterating and
evolving to a common solution.

113Case Study: A Blackjack Example

Let’s identify some nouns from our blackjack example: If the player and the dealer have
identical scores and at least 17, it is considered a draw, and the player retains the bet.

Now let’s make a list of the possible objects (classes):

n Game
n Blackjack
n Dealer
n House
n Players
n Player
n Cards

n Card
n Deck
n Hand
n Face value
n Suit
n Winner
n Ace

n Face card
n King
n Queen
n Jack
n Game
n Bet

Can you find any other possible classes that were missed? There might well be some
classes that you feel should be in the list but are not.There might also be classes that you
feel should not have made the list. In any event, we now have a starting point, and we can
begin the process of fine-tuning the list of classes.This is an iterative process, and although
we have 19 potential classes, our final class list might be a lot shorter.

Again, remember that this is just the initial pass.You will want to iterate through this a
number of times and make changes.You might even find that you left an important object
out or that you need to split one object into two objects. Now let’s explore each of the
possible classes (as classes are eliminated, they will be crossed out with a strikethrough):

n Game—Blackjack is the name of the game.Thus, we treat this in the same way we
treated the noun game.

n Blackjack—In this case, game might be considered a noun, but the game is ac-
tually the system itself, so we will eliminate this as a potential class.

n Dealer—Because we cannot do without a dealer, we will keep this one (as a
note, we could abstract out the stuff pertaining to people in general, but we won’t
in this example). It might also be possible to avoid a dealer class altogether, thus
having the dealer simply be an instance of the player class. However, there are
enough additional attributes of a dealer that we should probably keep this class.

n House—This one is easy because it is just another name for the dealer, so we
strike it.

n Players and player—We need players, so we have to have this class. However,
we want the class to represent a single player and not a group of players, so we
strike player and keep player.

114 Chapter 6 Designing with Objects

n Cards and card—This one follows the same logic as player.We absolutely need
cards in the game, but we want the class to represent a single card, so we strike
cards and keep card.

n Deck—Because there are a lot of actions required by a deck (like shuffling and
drawing), we decide that this is a good choice for a class.

n Hand—This class represents a gray area. Each player will have a hand. In this game,
we will require that a player has a single hand. So it would be possible for a player to
keep track of the cards without having to have a hand object. However, because it is
theoretically possible for a player to have multiple hands, and because we might want
to use the concept of a hand in other card games, we will keep this class. Remember
that one of the goals of a design is to be extensible. If we create a good design for
the blackjack game, perhaps we can reuse the classes later for other card games.

n Face value—The face value of the card is best represented as an attribute in the
card class, so let’s strike this as a class.

n Suit—Again, this is a gray area. For the blackjack game, we do not need to keep
track of the suit. However, there are card games that need to keep track of the suit.
Thus, to make this class reusable, we should track it. However, the suit is not a good
candidate for a class. It should be an attribute of a card, so we will strike it as a class.

n Ace—This could better be represented as an attribute of the card class, so let’s
strike it as a class.

n Face Card—This could better be represented as attribute of the card class, so
let’s strike it as a class.

n King—This could better be represented as attribute of the card class, so let’s strike
it as a class.

n Queen—This could better be represented as attribute of the card class, so let’s
strike it as a class.

n Bet—This class presents a dilemma.Technically you could play blackjack without a
bet; however, the requirements statement clearly includes a bet in the description.
The bet could be considered an attribute of the player in this case, but there are
many other games where a player does not need to have a bet. In short, a bet is not
a logical attribute of a player.Also abstracting out the bet is a good idea because we
might want to bet various things.You can bet money, chips, your watch, your horse,
or even the title to your house. Even though there might be many valid arguments
not to make the bet a class, in this case we will.

We are left with six classes, as shown in Figure 6.5.

115Case Study: A Blackjack Example

Card Deck Hand

Dealer Player Bet

BlackJack Game

Figure 6.5 The initial blackjack classes.

Design Decisions
The dealer could be a specific type of player and perhaps inherit from a player class. How-
ever, this would be a design decision.

Identifying the Classes’ Responsibilities
Responsibilities relate to actions.You can generally identify responsibilities by selecting the
verbs from the summary of the requirements. From this list you can glean your responsi-
bilities. However, keep in mind the following:

Verbs
Although it is true that verbs generally correlate with responsibilities, verbs are not the only
places where responsibilities are found.

n Not all verbs in the requirements summary will ultimately end up as responsibilities.
n You might need to combine several verbs to find an actual responsibility.
n Some responsibilities ultimately chosen will not be in the original requirements

summary.
n Because this is an iterative process, you need to keep revising and updating both the

requirements summary and the responsibilities.
n If two or more classes share a responsibility, each class will have the responsibility.

Let’s take an initial stab at identifying the verbs, which will lead us down the path toward
uncovering the responsibilities of our classes: If the player and the dealer have identical
scores and at least 17, then it is considered a draw, and the player retains the bet.

Now let’s make a list of the possible responsibilities for our classes:
n Card

n Know its face value
n Know its suit
n Know its value
n Know whether it is a face card

116 Chapter 6 Designing with Objects

n Know whether it is an ace
n Know whether it is a joker

n Deck

n Shuffle
n Deal the next card
n Know how many cards are left in the deck
n Know whether there is a full deck to begin

n Hand

n Know how many cards are in the hand
n Know the value of the hand
n Show the hand

n Dealer

n Deal the cards
n Shuffle the deck
n Give a card to a player
n Show the dealer’s hand
n Calculate the value of the dealer’s hand
n Know the number of cards in the dealer’s hand
n Request a card (hit or hold)
n Determine the winner
n Start a new hand

n Player

n Request a card (hit or hold)
n Show the player’s hand
n Calculate the value of the player’s hand
n Know how many cards are in the hand
n Know whether the hand value is over 21
n Know whether the hand value is equal to 21 (and if it is a blackjack)
n Know whether the hand value is below 21

n Bet

n Know the type of bet
n Know the value of the current bet
n Know how much the player has left to bet
n Know whether the bet can be covered

117Case Study: A Blackjack Example

Remember that this is just the initial pass.You will want to iterate through this a number
of times and make changes.You might even find that you’ve left an important responsibil-
ity out or that you need to split one responsibility into two. Now let’s explore the possible
responsibilities.We are left with the following classes and responsibilities:

Card
n Know its face value

The card definitely needs to know this. Internally, this class must track the value of
the card. Because this is an implementation issue, we don’t want to phrase the re-
sponsibility in this way. From an interface perspective, let’s call this display face value.

n Know its suit

For the same reason as with face value, we will keep this responsibility, and rename
it display name (which will identify the suit). However, we don’t need this for black-
jack.We will keep it for potential reuse purposes.

n Know whether it is a face card.

We could have a separate responsibility for face cards, aces, and jokers, but the report
value responsibility can probably handle this. Strike this responsibility.

n Know whether it is an ace.

Same as previous item—let’s strike this responsibility.
n Know whether it is a joker.

Same as previous, but notice that the joker was never mentioned in the require-
ments statement.This is a situation where we can add a responsibility to make the
class more reusable. However, the responsibility for the joker goes to the report
value, so let’s strike this responsibility.

Class Design
What to do with the jokers presents an interesting OO design issue. Should there be two
separate classes—a superclass representing a regular deck of cards (sans jokers) and a
subclass representing a deck of cards with the addition of the jokers? From an OO purist’s
perspective, having two classes might be the right approach. However, having a single class
with two separate constructors might also be a valid approach. What happens if you have
decks of cards that use other configurations (such as no aces or no jacks)? Do we create a
separate class for each, or do we handle them in the main class?

This is another design issue that ultimately has no right or wrong answer.

Deck
n Shuffle

We definitely need to shuffle the deck, so let’s keep this one.
n Deal the next card

118 Chapter 6 Designing with Objects

We definitely need to deal the next card, so let’s keep this one.
n Know how many cards are left in the deck

At least the dealer needs to know if there are any cards left, so let’s keep this one.
n Know if there is a full deck to begin.

The deck must know whether it includes all the cards. However, this might be
strictly an internal implementation issue; in any event, let’s keep this one for now.

Hand
n Know how many cards are in the hand

We definitely need to know how many cards are in a hand, so let’s keep this one.
However, from an interface perspective, let’s rename this report the number of cards in
the hand.

n Know the value of the hand

We definitely need to know the value of the hand, so let’s keep this one. However,
from an interface perspective, let’s rename this report the value of the hand.

n Show the hand

We need to be able to see the contents of the hand.

Dealer
n Deal the cards

The dealer must be able to deal the initial hand, so let’s keep this one.
n Shuffle the deck

The dealer must be able to shuffle the deck, so let’s keep this one.Actually, should
we make the dealer request that the deck shuffle itself? Possibly.

n Give a card to a player

The dealer must be able to add a card to a player’s hand, so let’s keep this one.
n Show the dealer’s hand

We definitely need this functionality, but this is a general function for all players, so
perhaps the hand should show itself and the dealer should request this. Let’s keep it
for now.

n Calculate the value of the dealer’s hand

Same as previous. But the term calculate is an implementation issue in this case. Let’s
rename it show the value of the dealer’s hand.

n Know the number of cards in the dealer’s hand

Is this the same as show the value of the dealer’s hand? Let’s keep this for now, but re-
name it show the number of cards in the dealers hand.

n Request a card (hit or hold)

119Case Study: A Blackjack Example

A dealer must be able to request a card. However, because the dealer is also a player,
is there a way that we can share the code? Although this is possible, for now we are
going to treat a dealer and a player separately. Perhaps in another iteration through
the design, we can use inheritance and factor out the commonality.

n Determine the winner

This depends on whether we want the dealer to calculate this or the game object.
For now, let’s keep it.

n Start a new hand

Let’s keep this one for the same reason as the previous item.

Player
n Request a card (hit or hold)

A player must be able to request a card, so let’s keep this one.
n Show the player’s hand

We definitely need this functionality, but this is a general function for all players, so
perhaps the hand should show itself and the dealer should request this. Let’s keep
this one for now.

n Calculate the value of the player’s hand

Same as previous. But the term calculate is an implementation issue in this case. Let’s
rename this show the value of the player’s hand.

n Know how many cards are in the hand

Is this the same as show the player’s hand? Let’s keep this for now, but rename it show
the number of cards in the player’s hand.

n Know whether the hand value is over 21, equal to 21 (including a blackjack), or be-
low 21.

Who should make this determination? These are based on the specific rules of the
game.The player definitely needs to know this to make a decision about whether to
request a card. In fact, the dealer needs to do this, too.This could be handled in
report the value of the hand.

Bet
n Know the type of bet

At this point, we will keep this for future reuse; however, for this game, we will re-
quire that the type of the bet is always money.

n Know the value of the current bet

We need this to keep track of the value of the current bet.The player and the dealer
need to know this.We will assume that the dealer (that is, the house) has an unlim-
ited amount to bet.

120 Chapter 6 Designing with Objects

n Know how much the player has left to bet

In this case, the bet can also act as the pool of money that the player has available. In
this way, the player cannot make a bet that exceeds his resources.

n Know whether the bet can be covered

This is a simple response that allows the dealer (or the house) to determine whether
the player can cover the bet.

As we iterate through the design process, we decide that we really do not want to have a
separate bet class. If we need to, we can add it later.The decision needs to be based on two
issues:

n Do we really need the class now or for future classes?
n Will it be easy to add later without a major redesign of the system?

After careful consideration, we decide that the bet class is not needed and most probably
will not be needed later.We make an assumption that the payment method for all future
bets will be money.An argument can be made that this approach might not be the best
design decision. I can think of many reasons that we might want to have a bet object.
There might be some behavior that should be encapsulated in a bet object. However, for
now, we will scrap the bet object and make the dealer and players handle their own bets.

UML Use-Cases: Identifying the Collaborations
To identify the collaborations, we need to study the responsibilities and determine what
other classes the object interacts with. In short, what other classes does this object need to
fulfill all its required responsibilities and complete its job? As you examine the collabora-
tions, you might find that you have missed some necessary classes or that some classes you
initially identified are not needed:

n To help discover collaborations, use-case scenarios can be used.A use-case is a trans-
action or sequence of related operations that the system performs in response to a
user request or event.

n For each use-case, identify the objects and the messages that it exchanges.

You might want to create collaboration diagrams to document this step. Obviously, there
can be an infinite number of scenarios.The purpose of this part of the process is not nec-
essarily to document all possible scenarios, which is an impossible task.The real purpose of
creating use-case scenarios is to help you refine the choice of your classes and their re-
sponsibilities.

By examining the collaborations, you might identify an important class that you
missed. If this is the case, you can simply add another CRC card.You might also discover
that one of the classes you originally chose is not as important as you once thought, so
you can strike it and remove the CRC card from consideration. CRC cards help you dis-
cover classes, whereas use-case scenarios help you discover collaborations.

121Case Study: A Blackjack Example

For example, let’s consider a single possible scenario. In this case, we have a dealer and a
single player.

n Dealer shuffles deck
n Player makes bet
n Dealer deals initial cards
n Player adds cards to player’s hand
n Dealer adds cards to dealer’s hand
n Hand returns value of player’s hand to player
n Hand returns value of dealer’s hand to dealer
n Dealer asks player whether player wants another card
n Dealer deals player another card
n Player adds the card to player’s hand
n Hand returns value of player’s hand to player
n Dealer asks player whether player wants another card
n Dealer gets the value of the player’s hand
n Dealer sends or requests bet value from players
n Player adds to/subtracts from player’s bet attribute

Let’s determine some of the collaborations.Assume that we have a main application that
contains all the objects (that is, we do not have a Game class).As part of our design, we
have the dealer start the game. Figures 6.6 through 6.15 present some collaboration dia-
grams pertaining to this initial design.

App DealerStartNewGame

Figure 6.6 Start the game.

Dealer DeckResetDeck

Dealer DeckShuffleDeck

Dealer Player

MoreCards

returnValue()

Figure 6.7 Shuffle and initially deal.

122 Chapter 6 Designing with Objects

Player Hand

GetHandValue

returnValue

Figure 6.8 Get the hand value.

Dealer Deck

getCard

returnCard

Figure 6.9 Get a card.

Dealer Player

playerBusts

returnValue

Dealer PlayergiveCard

Figure 6.10 Deal a card and check to see whether the player busts.

Player Hand

GetHandValue

returnValue

Figure 6.11 Return the value of the hand.

D_Player Hand

GetHandValue

returnValue

Dealer D_Player

MoreCards

returnValue()

Figure 6.12 Does the dealer want more cards?

123Case Study: A Blackjack Example

Dealer D_Player

getCard

returnCard

Dealer Deck

giveCard

Figure 6.13 If requested, give the dealer a card.

D_Player Hand

GetHandValue

returnValue

Dealer D_Player

playerBusts

returnValue

Figure 6.14 Does the dealer bust?

D_Player Hand

GetHandValue

returnValue

Dealer D_Player

GetHandValue

returnValue

Figure 6.15 Do either the
dealer or the player stand?

124 Chapter 6 Designing with Objects

Intangibles
Be aware that there are more issues than the value of a player’s hand involved in deciding
whether to take another card. A player at a real blackjack table might go with a gut feel or
how the dealer’s hand looks. Although we might not be able to take gut feelings into consid-
eration, we can deal with the issue of what the dealer’s hand currently shows.

First Pass at CRC Cards
Now that we have identified the initial classes and the initial collaborations, we can com-
plete the CRC cards for each class. It is important to note that these cards represent the
initial pass only. In fact, although it is likely that many of the classes will survive the subse-
quent passes, the final list of classes and their corresponding collaborations might look
nothing like what was gleaned from the initial pass.This exercise is meant to explain the
process and create an initial pass, not to come up with a final design. Completing the de-
sign is a good exercise for you to undertake at the end of this chapter. Figures 6.16
through 6.20 present some CRC cards pertaining to this initial design.

Class: Card
Responsibilities: Collaborations:
Get name Deck
Get value

Figure 6.16 A CRC card for the Card class.

Class: Deck
Responsibilities: Collaborations:
Reset deck Dealer
Get deck size Card
Get next card
Shuffle Deck
Show deck.

Figure 6.17 A CRC card for the Deck class.

125Case Study: A Blackjack Example

Class: Hand
Responsibilities: Collaborations:
Return Value Player
Add a card Dealer
Show Hand

Figure 6.20 A CRC card for the Hand class.

Class: Dealer
Responsibilities: Collaborations:
Start a new game. Hand
Get a card. Player
 Deck

Figure 6.18 A CRC card for the Dealer class.

Class: Player
Responsibilities: Collaborations:
Want more cards? Hand
Get a card. Dealer
Show hand.
Get value of hand.

Figure 6.19 A CRC card for the Player class.

126 Chapter 6 Designing with Objects

UML Class Diagrams: The Object Model
After you have completed the initial design using CRC cards, transfer the information
contained on the CRC cards to class diagrams (see Figure 6.21). Note that this class dia-
gram represents one possible design—it does not represent the initial pass of classes created
during the previous exercise.The class diagrams go beyond the information on the CRC
cards and might include such information as method parameters and return types. (Note
that the UML diagrams in this book do not include method parameters.) Check out the
options for the modeling tool that you have to see how information is presented.You can
use the detailed form of the class diagram to document the implementation.

Remember that the purpose of this exercise is to identify the classes and their interfaces.
All the methods listed are public. Now a light bulb should be going off in your head.

Even though the search for the interfaces does not lead directly to private attributes
and even private methods, the process is helpful in determining these as well.As you iter-

–value:int
–hand:Vector

+getValue:int
+addToHand:void
+showHand:void

Hand

–name:String
–value:int
–suit:String

+getName:String
+getValue:int
+getSuit:String
+setName:void
+setValue:void
+setSuit:void

Card

startNewGame:void
+getCard:Card

Dealer

limit:int

Player:
+moreCards:boolean
+getCard:void
+showHand:void
+getValueOfHand:int

Player

–cards:Vector
–shuffledCards:Vector
 random:Random
–nextItem:int

 Deck:
+resetDeck:void
+getDeckSize:int
+getNextCard:Card
+shuffleDeck:void
+showOriginalDeck:void
+showShuffledDeck:void
+completeDeck:void
-createHearts:void
-createSpades:void
-createClubs:void
-createDiamonds:void

Deck

Figure 6.21 A UML diagram for the blackjack program.

127Conclusion

ate through the CRC process, note what attributes and private methods each class will re-
quire.

Prototyping the User Interface
As our final step in the OO design process, we must create a prototype of our user inter-
face.This prototype will provide invaluable information to help navigate through the iter-
ations of the design process.As Gilbert and McCarty in Object-Oriented Design in Java aptly
point out,“to a system user, the user interface is the system.”There are several ways to cre-
ate a user interface prototype.You can sketch the user interface by simply drawing it on
paper or a whiteboard.You can use a special prototyping tool or even a language environ-
ment like Visual Basic, which is often used for rapid prototyping. Or you can use the IDE
from your favorite development tool to create the prototype.

However you develop the user interface prototype, make sure that the users have the
final say on the look and feel.

Conclusion
This chapter covers the design process for complete systems. It focuses on combining sev-
eral classes to build a system. UML class diagrams represent this system.The example in
this chapter shows the first pass at creating a design and is not meant to be a finished de-
sign. Much iteration may be required to get the system model to the point where you are
comfortable with it.

Implementing Some Blackjack Code
While working on the first edition of this book, I came across a complete implementation of
a blackjack game in the book Java 1.1 Developers Guide by Jamie Jaworski. If you would like
to actually get your hands dirty and write some code to implement another blackjack design,
you might want to pick up this book. It is a very good, compressive Java book.

In the next several chapters, we explore in more detail the relationships between classes.
Chapter 7,“Mastering Inheritance and Composition,” covers the concepts of inheritance
and composition and how they relate to each other.

References
Ambler, Scott. The Object Primer, 3rd ed. Cambridge University Press, 2004. Cambridge,

United Kingdom.
Gilbert, Stephen, and Bill McCarty. Object-Oriented Design in Java.The Waite Group Press,

1998. Berkeley, CA.
Jaworski, Jamie. Java 2 Platform Unleashed. Sams Publishing, 1999. Indianapolis, IN.
Jaworski, Jamie. Java 1.1 Developers Guide. Sams Publishing, 1997. Indianapolis, IN.
Wirfs-Brock, R., B.Wilkerson, and L.Weiner. Designing Object-Oriented Software. Prentice-

Hall, 1990. Upper Saddle River New Jersey.
Weisfeld, Matt and John Ciccozzi.“Software by Committee,” Project Management Journal

v5, number 1 (September, 1999): 30–36.

128 Chapter 6 Designing with Objects

7
Mastering Inheritance

and Composition

Inheritance and composition play major roles in the design of object-oriented (OO)
systems. In fact, many of the most difficult and interesting design decisions come down to
deciding between inheritance and composition.

Both inheritance and composition are mechanisms for reuse. Inheritance, as its name
implies, involves inheriting attributes and behaviors from other classes. In this case, there is
a true parent/child relationship.The child (or subclass) inherits directly from the parent
(or superclass).

Composition, also as its name implies, involved building objects by using other objects.
In this chapter we will explore the obvious and subtle differences between inheritance and
composition. Primarily, we will consider the appropriate times to use one or the other.

Reusing Objects
Perhaps the primary reason that inheritance and composition exist is object reuse. In
short, you can build classes (which become objects) by utilizing other classes via inheri-
tance and composition, which in effect, are the only ways to reuse previously built classes.

Inheritance represents the is-a relationship that was introduced in Chapter 1,“Intro-
duction to Object-Oriented Concepts.” For example, a dog is a mammal.

Composition involves using other classes to build more complex classes—a sort of as-
sembly.There is no parent/child relationship in this case. Basically, complex objects are
composed of other objects. Composition represents a has-a relationship. For example, a
car has an engine. Both the engine and the car are separate, potentially standalone ob-
jects. However, the car is a complex object that contains (has an) engine object. In fact, a
child object might itself be composed of other objects; for example, the engine might in-
clude cylinders. In this case an engine has a cylinder, actually several.

When OO technologies first entered the mainstream, inheritance was all the rage.The
fact that you could design a class once and then inherit functionality from it was consid-

130 Chapter 7 Mastering Inheritance and Composition

ered the foremost advantage to using OO technologies. Reuse was the name of the game,
and inheritance was the ultimate expression of reuse.

However, over time the luster of inheritance has dulled a bit. In fact, in some discus-
sions, the use of inheritance itself is questioned. In their book Java Design, Peter Coad and
Mark Mayfield have a complete chapter titled “Design with Composition Rather Than
Inheritance.” Many early object-based platforms did not even support true inheritance.As
Visual Basic evolved in to Visual Basic .NET, early object-based implementations did not
include strict inheritance capabilities. Platforms such as the MS COM model were based
on interface inheritance. Interface inheritance is covered in great detail in Chapter 8,
“Frameworks and Reuse: Designing with Interfaces and Abstract Classes.”

The good news is that the discussions about whether to use inheritance or composi-
tion are a natural progression toward some seasoned middle ground.As in all philosophi-
cal debates, there are fanatical arguments on both sides. Fortunately, as is normally the
case, these heated discussions have led to a more sensible understanding of how to utilize
the technologies.

We will see later in this chapter why some people believe that inheritance should be
avoided, and composition should be the design method of choice.The argument is fairly
complex and subtle. In actuality, both inheritance and composition are valid class design
techniques, and they each have their proper place in the OO developer’s toolkit.

The fact that inheritance is often misused and overused is more a result of a lack of
understanding of what inheritance is all about than a fundamental flaw in using inheri-
tance as a design strategy.

The bottom line is that inheritance and composition are both important techniques in
building OO systems. Designers and developers simply need to take the time to under-
stand the strengths and weaknesses of both and to use each in the proper contexts.

Inheritance
Inheritance was defined in Chapter 1 as a system in which child classes inherit attributes
and behaviors from a parent class. However, there is more to inheritance, and in this chap-
ter we explore inheritance in greater detail.

Chapter 1 states that you can determine an inheritance relationship by following a
simple rule: If you can say that Class B is a Class A, then this relationship is a good candi-
date for inheritance.

Is-a
One of the primary rules of OO design is that public inheritance is represented by an is-a
relationship.

Let’s revisit the mammal example used in Chapter 1. Let’s consider a Dog class.A dog has
several behaviors that make it distinctly a dog, as opposed to a cat. For this example, let’s
specify two:A dog barks, and a dog pants. So we can create a Dog class that has these two
behaviors, along with two attributes (see Figure 7.1).

131Inheritance

Dog
barkFrequency: int
pantRate: int

bark: void
pant: void

Figure 7.1 A class diagram for the Dog class.

Dog
barkFrequency: int
pantRate: int

bark: void
pant: void

GoldenRetriever
retrievalSpeed: int

retrieves: void

Figure 7.2 The GoldenRetriever class inherits from the Dog class.

Now let’s say that you want to create a GoldenRetriever class.You could create a brand
new class that contains the same behaviors that the Dog class has. However, we could make
the following, and quite reasonable, conclusion:A Golden Retriever is-a dog. Because of
this relationship, we can inherit the attributes and behaviors from Dog and use it in our
new GoldenRetriever class (see Figure 7.2).

The GoldenRetriever class now contains its own behaviors as well as all the more gen-
eral behaviors of a dog.This provides us with some significant benefits. First, when we
wrote the GoldenRetriever class, we did not have to reinvent part of the wheel by
rewriting the bark and pant methods. Not only does this save some coding time, but it
saves testing and maintenance time as well.The bark and pant methods are written only
once and, assuming that they were properly tested when the Dog class was written, they do
not need to be heavily tested again (but it does need to be retested).

Now let’s take full advantage of our inheritance structure and create a second class un-
der the Dog class: a class called LhasaApso.Whereas retrievers are bred for retrieving, Lhasa
Apsos are bred for use as guard dogs.These dogs are not attack dogs, they have acute
senses, and when they sense something unusual, they start barking. So we can create our
LhasaApso class and inherit from the Dog class just as we did with the GoldenRetriever
class (see Figure 7.3).

132 Chapter 7 Mastering Inheritance and Composition

Dog
barkFrequency: int
pantRate: int

bark: void
pant: void

GoldenRetriever
retrievalSpeed: int

retrieves: void

LhasaApso
guardEfficiency: int

guards: void

Figure 7.3 The LhasaApso
class inherits from the Dog

class.

Testing New Code
In our example with the GoldenRetriever class, the bark and pant methods should be
written, tested, and debugged when the Dog class is written. Theoretically, this code is now
robust and ready to reuse in other situations. However, the fact that you do not need to
rewrite the code does not mean it should not be tested. However unlikely, there might be
some specific characteristic of a retriever that somehow breaks the code. The bottom line is
that you should always test new code. Each new inheritance relationship creates a new con-
text for using inherited methods. A complete testing strategy should take into account each
of these contexts.

Another primary advantage of inheritance is that the code for bark() and pant() is in a
single place. Let’s say there is a need to change the code in the bark() method.When you
change it in the Dog class, you do not need to change it in the LhasaApso class and the
GoldenRetriever class.

Do you see a problem here? At this level the inheritance model appears to work very
well. However, can you be certain that all dogs have the behavior contained in the Dog class?

In his book Effective C++, Scott Meyers gives a great example of a dilemma with de-
sign using inheritance. Consider a class for a bird. One of the most recognizable character-
istics of a bird is, of course, that it can fly. So we create a class called Bird with a fly
method.You should immediately understand the problem.What do we do with a pen-
guin, or an ostrich? They are birds, yet they can’t fly.You could override the behavior lo-
cally, but the method would still be called fly.And it would not make sense to have a
method called fly for a bird that does not fly but only waddles.

For example, if a penguin has a fly method, the penguin might understandably decide
to test it out. However, if the fly method was in fact overridden and the behavior to fly
did not actually exist, the penguin would be in for a major surprise when the fly method
is invoked. Imagine the penguin’s chagrin when the call to the fly method results in
waddling instead of flight.

133Inheritance

GoldenRetriever
retrievalSpeed: int

retrieves: void

Basenji
huntEfficiency: int

hunts: void

LhasaApso
guardEfficiency: int

guards: void

YodelingDog
yodelFrequency: int

yodels: void

BarkingDog
barkFrequency: int

bark: void

Dog
pantRate: int

pant: void

Figure 7.4 The Dog class hierarchy.

In our dog example, we have designed into the class that all dogs can bark. However,
there are dogs that do not bark.The Basenji breed is a barkless dog.These dogs do not
bark, but they do yodel. So should we reevaluate our design? What would this design look
like? Figure 7.4 is an example that shows a more correct way to model the hierarchy of
the Dog class.

Generalization and Specialization
Consider the object model of the Dog class hierarchy.We started with a single class, called
Dog, and we factored out some of the commonality between various breeds of dogs.This
concept, sometimes called generalization-specialization, is yet another important considera-
tion when using inheritance.The idea is that as you make your way down the inheritance
tree, things get more specific.The most general case is at the top of the tree. In our Dog in-
heritance tree, the class Dog is at the top and is the most general category.The various
breeds—the GoldenRetriever, LhasaApso, and Basenji classes—are the most specific.
The idea of inheritance is to go from the general to the specific by factoring out
commonality.

In the Dog inheritance model, we started factoring out common behavior by under-
standing that although a retriever has some different behavior from that of a LhasaApso,
the breeds do share some common behaviors—for example, they both pant and bark.
Then we realized that all dogs do not bark—some yodel.Thus, we had to factor out the
barking behavior into a separate BarkingDog class.The yodeling behavior went into a
YodelingDog class. However, we still realized that both barking dogs and barkless dogs still
shared some common behavior—all dogs pant.Thus, we kept the Dog class and had the
BarkingDog and the YodelingDog classes inherit from Dog. Now Basenji can inherit
from YodelingDog, and LhasaApso and GoldenRetriever can inherit from BarkingDog.

134 Chapter 7 Mastering Inheritance and Composition

We could have decided not to create two distinct classes for BarkingDog and
YodelingDog. In this case we could implement all barking and yodeling as part of each in-
dividual breed’s class—since each dog would sound differently.This is just one example of
some of the design decisions that have to be made. Perhaps the best solution is to imple-
ment the barking and yodeling as interfaces, which we discuss in Chapter 8,“Frameworks
and Reuse: Designing with Interfaces and Abstract Classes.”

Design Decisions
In theory, factoring out as much commonality as possible is great. However, as in all de-
sign issues, sometimes it really is too much of a good thing.Although factoring out as
much commonality as possible might represent real life as closely as possible, it might not
represent your model as closely as possible.The more you factor out, the more complex
your system gets. So you have a conundrum: Do you want to live with a more accurate
model or a system with less complexity? You have to make this choice based on your situ-
ation, for there are no hard guidelines to make the decision.

What Computers Are Not Good At
Obviously a computer model can only approximate real-world situations. Computers are good
at number crunching but are not as good at more abstract operations.

For example, breaking up the Dog class into BarkingDog and the YodelingDog models real
life better than assuming that all dogs bark, but it does add a bit of complexity.

Model Complexity
At this level of our example, adding two more classes does not make things so complex that
it makes the model untenable. However, in larger systems, when these kinds of decisions
are made over and over, the complexity quickly adds up. In larger systems, keeping things as
simple as possible is usually the best practice.

There will be instances in your design when the advantage of a more accurate model does
not warrant the additional complexity. Let’s assume that you are a dog breeder and that
you contract out for a system that tracks all your dogs.The system model that includes
barking dogs and yodeling dogs works fine. However, suppose that you simply do not
breed any yodeling dogs—never have and never will. Perhaps you do not need to include
the complexity of differentiating between yodeling dogs and barking dogs.This will make
your system less complex, and it will provide the functionality that you need.

Deciding whether to design for less complexity or more functionality is really a bal-
ancing act.The primary goal is always to build a system that is flexible without adding so
much complexity that the system collapses under its own weight.

Current and future costs are also a major factor in these decisions.Although it might
seem appropriate to make a system more complete and flexible, this added functionality
might barely add any benefit—the return on investment just might not be there. For ex-
ample, would you extend the design of your Dog system to include other canines, such as
hyenas and foxes (see Figure 7.5)?

135Composition

 GoldenRetriever
retrievalSpeed: int

retrieves: void

Basenji
huntEfficiency: int

hunts: void

LhasaApso
guardEfficiency: int

guards: void

YodelingDog
yodelFrequency: int

yodels: void

BarkingDog
barkFrequency: int

bark: void

Hyena
pantRate: int

pant: void

Fox
pantRate: int

pant: void

Dog
pantRate: int

pant: void

Canine

Figure 7.5 An expanded canine model.

Although this design might be prudent if you were a zookeeper, the extension of the
Canine class is probably not necessary if you are breeding and selling domesticated dogs.

So as you can see, there are always tradeoffs when creating a design.

Making Design Decisions with the Future in Mind
You might at this point say, “Never say never.” Although you might not breed yodeling dogs
now, sometime in the future you might want to do so. If you do not design for the possibility
of yodeling dogs now, it will be much more expensive to change the system later to include
them. This is yet another of the many design decisions that you have to make. You could
possibly override the bark() method to make it yodel; however, this is not intuitive, as
some people will expect a method called bark() to actually bark.

Composition
It is natural to think of objects as containing other objects.A television set contains a
tuner and video display.A computer contains video cards, keyboards, and drives.The com-
puter can be considered an object unto itself, and a flash drive is also considered a valid
object.You could open up the computer and remove the hard drive and hold it in your
hand. In fact, you could take the hard drive to another computer and install it.The fact
that it is a standalone object is reinforced because it works in multiple computers.

The classic example of object composition is the automobile. Many books, training
classes, and articles seem to use the automobile as the epitome of object composition. Be-
sides the original interchangeable manufacture of the rifle, most people think of the auto-
mobile assembly line created by Henry Ford as the quintessential example of
interchangeable parts.Thus, it seems natural that the automobile has become a primary
reference point for designing OO software systems.

136 Chapter 7 Mastering Inheritance and Composition

A Car has a Steering Wheel

Figure 7.6 An example of composition.

Car

SteeringWheel

Figure 7.7 Representing
composition in UML.

Most people would think it natural for a car to contain an engine. Obviously, a car
contains many objects besides an engine, including wheels, a steering wheel, and a stereo.
Whenever a particular object is composed of other objects, and those objects are included
as object fields, the new object is known as a compound, an aggregate, or a composite object
(see Figure 7.6).

Aggregation, Association, and Composition
From my perspective, there are really only two ways to reuse classes—with inheritance or
composition. In Chapter 9, “Building Objects,” we discuss composition in more detail—
specifically, aggregation and association. In this book, I consider aggregation and associa-
tion to be types of composition, although there are varied opinions on this.

Representing Composition with UML
To model the fact that the car object contains a steering wheel object, UML uses the no-
tation shown in Figure 7.7.

137Composition

Aggregation, Association, and UML
In this book, aggregations are represented in UML by lines with a diamond, such as an en-
gine as part of a car. Associations are represented by just the line (no diamond), such as a
standalone keyboard servicing a separate computer box.

Note that the line connecting the Car class to the SteeringWheel class has a diamond
shape on the Car side of the line.This signifies that a Car contains (has-a) SteeringWheel.

Let’s expand this example. Let’s say that none of the objects used in this design use in-
heritance in any way.All the object relationships are strictly composition, and there are
multiple levels of composition. Of course, this is a simplistic example, and there are many,
many more object and object relationships in designing a car. However, this design is sim-
ply meant to be a simple illustration of what composition is all about.

Let’s say that a car is composed of an engine, a stereo system, and a door.

How Many Doors and Stereos?
Note that a car normally has more than one door. Some have two, and some have four. You
might even consider a hatchback a fifth door. In the same vein, it is not necessarily true that
all cars have a stereo system. A car could have no stereo system, or it could have one. I
have even seen a car with two separate stereo systems. These situations are discussed in
detail in Chapter 9. For the sake of this example, just pretend that a car has only a single
door (perhaps a special racing car) and a single stereo system.

The fact that a car is made up of an engine, a stereo system, and a door is easy to under-
stand because most people think of cars in this way. However, it is important to keep in
mind when designing software systems, just like automobiles, that objects are made up of
other objects. In fact, the number of nodes and branches that can be included in this tree
structure of classes is virtually unlimited.

Figure 7.8 shows the object model for the car, with the engine, stereo system, and door
included.

Note that all three objects that make up a car are themselves composed of other ob-
jects.The engine contains pistons and spark plugs.The stereo contains a radio and a CD
player.The door contains a handle.Also note that there is yet another level.The radio con-
tains a tuner.We could have also added the fact that a handle contains a lock; the CD
player contains a fast forward button, and so on.Additionally, we could have gone one
level beyond the tuner and created an object for a dial.The level and complexity of the
object model is, obviously, up to the designer.

Model Complexity
As with the inheritance problem of the barking and yodeling dogs, using too much composi-
tion can also lead to more complexity. There is a fine line between creating an object model
that contains enough granularity to be sufficiently expressive and a model that is so granular
that it is difficult to understand and maintain.

138 Chapter 7 Mastering Inheritance and Composition

Car

DoorStereoEngine

Pistons SparkPlugs Radio Handle

Tuner

Cassette

Figure 7.8 The Car class hierarchy.

Why Encapsulation Is Fundamental to OO
Encapsulation is really the fundamental concept of OO.Whenever the interface/imple-
mentation paradigm is covered, we are really talking about encapsulation.The basic ques-
tion is what in a class should be exposed and what should not be exposed.This
encapsulation pertains equally to data and behavior.When talking about a class, the pri-
mary design decision revolves around encapsulating both the data and the behavior into a
well-written class.

Stephen Gilbert and Bill McCarty define encapsulation as “the process of packaging
your program, dividing each of its classes into two distinct parts: the interface and the im-
plementation.”This is the message that has been presented over and over again in this
book.

But what does encapsulation have to do with inheritance, and how does it apply with
regard to this chapter? This has to do with an OO paradox. Encapsulation is so fundamen-
tal to OO that it is one of OO design’s cardinal rules. Inheritance is also considered one of
the three primary OO concepts. However, in one way, inheritance actually breaks encap-
sulation! How can this be? Is it possible that two of the three primary concepts of OO are
incompatible with each other? Well, let’s explore this possibility.

139Why Encapsulation Is Fundamental to OO

How Inheritance Weakens Encapsulation
As already stated, encapsulation is the process of packaging classes into the public interface
and the private implementation. In essence, a class hides everything that is not necessary
for other classes to know about.

Peter Coad and Mark Mayfield make a case that when using inheritance; encapsulation
is inherently weakened within a class hierarchy.They talk about a specific risk: Inheritance
connotes strong encapsulation with other classes but weak encapsulation between a super-
class and its subclasses.

The problem is that if you inherit an implementation from a superclass and then
change that implementation, the change from the superclass ripples through the class hierar-
chy.This rippling effect potentially affects all the subclasses.At first, this might not seem
like a major problem; however, as we have seen, a rippling effect such as this can cause
unanticipated problems. For example, testing can become a nightmare. In Chapter 6,“De-
signing with Objects,” we talked about how encapsulation makes testing systems easier. In
theory, if you create a class called Cabbie (see Figure 7.9) with the appropriate public in-
terfaces, any change to the implementation of Cabbie should be transparent to all other
classes. However, in any design a change to a superclass is certainly not transparent to a
subclass. Do you see the conundrum?

If the other classes were directly dependent on the implementation of the Cabbie class,
testing would become more difficult, if not untenable.

Keep Testing
Even with encapsulation, you would still want to retest the classes that use Cabbie to verify
that no problem has been introduced by the change.

If you then create a subclass of Cabbie called PartTimeCabbie, and PartTimeCabbie in-
herits the implementation from Cabbie, changing the implementation of Cabbie directly
affects the PartTimeCabbie class.

Cabbie
–companyName: String

+Cabbie: void
+Cabbie: void
+setName: void
+getName: String
+giveDirections: void
–turnRight: void
–turnLeft: void
+getCompanyName: String

–name: String

Figure 7.9 A UML diagram of
the Cabbie class.

140 Chapter 7 Mastering Inheritance and Composition

Cabbie

–companyName: String

+Cabbie: void
+Cabbie: void
+setName: void
+getName: String
+giveDirections: void
–turnRight: void
–turnLeft: void
+getCompanyName: String

–name: String

PartTimeCabbie

partTimeHours: int

+setPartTimeHours: void
+getPartTimeHours: int

Figure 7.10 A UML diagram of the Cabbie/PartTimeCabbie classes.

For example, consider the UML diagram in Figure 7.10. PartTimeCabbie is a subclass
of Cabbie.Thus, PartTimeCabbie inherits the public implementation of Cabbie, includ-
ing the method giveDirections(). If the method giveDirections is changed in
Cabbie, it will have a direct impact on PartTimeCabbie and any other classes that might
later be subclasses of Cabbie. In this subtle way, changes to the implementation of Cabbie
are not necessarily encapsulated within the Cabbie class.

To reduce the risk posed by this dilemma, it is important that you stick to the strict is-a
condition when using inheritance. If the subclass were truly a specialization of the super-
class, changes to the parent would likely affect the child in ways that are natural and ex-
pected.To illustrate, if a Circle class inherits implementation from a Shape class, and a
change to the implementation of Shape breaks Circle, then Circle was not truly a
Shape to begin with.

How can inheritance be used improperly? Consider a situation in which you want to
create a window for the purposes of a graphical user interface (GUI). One impulse might
be to create a window by making it a subclass of a rectangle class:

public class Rectangle {

}

public class Window extends Rectangle {

}

141Why Encapsulation Is Fundamental to OO

In reality a GUI window is much, much more than a rectangle. It is not really a spe-
cialized version of a rectangle, as is a square.A true window might contain a rectangle (in
fact many rectangles); however, it is really not a true rectangle. In this approach, a Window
class should not inherit from Rectangle, but it should contain Rectangle classes.

public class Window {

Rectangle menubar;

Rectangle statusbar;

Rectangle mainview;

}

A Detailed Example of Polymorphism
Many people consider polymorphism a cornerstone of OO design. Designing a class for
the purpose of creating totally independent objects is what OO is all about. In a well-de-
signed system, an object should be able to answer all the important questions about it.As a
rule, an object should be responsible for itself.This independence is one of the primary
mechanisms of code reuse.

As stated in Chapter 1, polymorphism literally means many shapes.When a message is
sent to an object, the object must have a method defined to respond to that message. In an
inheritance hierarchy, all subclasses inherit the interfaces from their superclass. However,
because each subclass is a separate entity, each might require a separate response to the
same message.

To review the example in Chapter 1, consider a class called Shape.This class has a be-
havior called Draw. However, when you tell somebody to draw a shape, the first question
they ask is likely to be,“What shape?” Simply telling a person to draw a shape is too ab-
stract (in fact, the Draw method in Shape contains no implementation).You must specify
which shape you mean.To do this, you provide the actual implementation in Circle and
other subclasses. Even though Shape has a Draw method, Circle overrides this method
and provides its own Draw method. Overriding basically means replacing an implementa-
tion of a parent with your own.

Object Responsibility
Let’s revisit the Shape example from Chapter 1 (see Figure 7.11).

Polymorphism is one of the most elegant uses of inheritance. Remember that a Shape
cannot be instantiated. It is an abstract class because it has an abstract method, getArea().
Chapter 8 explains abstract classes in great detail.

However, Rectangle and Circle can be instantiated because they are concrete classes.
While Rectangle and Circle are both shapes, they obviously have some differences.As

142 Chapter 7 Mastering Inheritance and Composition

Rectangle
length: double
width: double

+Rectangle:
+getArea: double

Circle
radius: double

+Circle:
+getArea: double

Shape
#area: double

+getArea: double

Figure 7.11 The Shape
class hierarchy.

shapes, their area can be calculated.Yet the formula to calculate the area is different for
each.Thus, the area formulas cannot be placed in the Shape class.

This is where polymorphism comes in.The premise of polymorphism is that you can
send messages to various objects, and they will respond according to their object’s type.
For example, if you send the message getArea to a Circle class, you will invoke a com-
pletely different calculation than if you send the same getArea message to a Rectangle
class.This is because both Circle and Rectangle are responsible for themselves. If you ask
Circle to return its area, it knows how to do this. If you want a circle to draw itself, it can
do this as well.A Shape object could not do this even if it could be instantiated because it
does not have enough information about itself. Notice that in the UML diagram (Figure
7.11), the getArea method in the Shape class is italicized.This designates that the method
is abstract.

As a very simple example, imagine that there are four classes: the abstract class Shape,
and concrete classes Circle, Rectangle, and Star. Here is the code:

public abstract class Shape{

public abstract void draw();

}

public class Circle extends Shape{

public void draw() {

System.out.println(“I am drawing a Circle”);

}

}

public class Rectangle extends Shape{

143Why Encapsulation Is Fundamental to OO

public void draw() {

System.out.println(“I am drawing a Rectangle”);

}

}

public class Star extends Shape{

public void draw() {

System.out.println(“I am drawing a Star”);

}

}

Notice that there is only one method for each class: draw. Here is the important point
regarding polymorphism and an object being responsible for itself:The concrete classes
themselves have responsibility for the drawing function.The Shape class does not provide
the code for drawing; the Circle, Rectangle, and Star classes do this for themselves.
Here is some code to prove it:

public class TestShape {

public static void main(String args[]) {

Circle circle = new Circle();

Rectangle rectangle = new Rectangle();

Star star = new Star();

circle.draw();

rectangle.draw();

star.draw();

}

}

Compiling This Code
If you want to compile this Java code, make sure that you set classpath to the current di-
rectory:

javac -classpath . Shape.java
javac -classpath . Circle.java
javac -classpath . Rectangle.java
javac -classpath . Star.java

144 Chapter 7 Mastering Inheritance and Composition

javac -classpath . TestShape.java

Actually, when you compile a Java class (in this case TestShape) and it requires another
class (let’s say Circle), the javac compiler will attempt to compile all the required classes.
Thus, the following line will actually compile all the files in this example.

javac -classpath . TestShape.java

The test application TestShape creates three classes: Circle, Rectangle, and Star.To ac-
tually draw these classes, TestShape simply asks the individual classes to draw themselves:

circle.draw();

rectangle.draw();

star.draw();

When you execute TestShape, you get the following results:

C:\>java TestShape

I am drawing a Circle

I am drawing a Rectangle

I am drawing a Star

This is polymorphism at work.What would happen if you wanted to create a new
shape, say Triangle? Simply write the class, compile it, test it, and use it.The base class
Shape does not have to change—nor does any other code:

public class Triangle extends Shape{

public void draw() {

System.out.println(“I am drawing a Triangle”);

}

}

A message can now be sent to Triangle.And even though Shape does not know how
to draw a triangle, the Triangle class does:

public class TestShape {

public static void main(String args[]) {

Circle circle = new Circle();

Rectangle rectangle = new Rectangle();

Star star = new Star();

Triangle triangle = new Triangle ();

circle.draw();

rectangle.draw();

star.draw();

145Conclusion

triangle.draw();

}

}

C:\>java TestShape

I am drawing a Circle

I am drawing a Rectangle

I am drawing a Star

I am drawing a Triangle

To see the real power of polymorphism, you can actually pass the shape to a method
that has absolutely no idea what shape is coming.

public class TestShape {

public static void main(String args[]) {

Circle circle = new Circle();

Rectangle rectangle = new Rectangle();

Star star = new Star();

drawMe(circle);

drawMe(rectangle);

drawMe(star);

}

static void drawMe(Shape s) {

s.draw();

}

}

In this case, the Shape object can be passed to the method drawMe, and the drawMe
method can handle any valid Shape—even one you add later.You can run this version of
TestShape just like the previous one.

Conclusion
This chapter gives a basic overview of what inheritance and composition are and how
they are different. Many well-respected OO designers have stated that composition
should be used whenever possible, and inheritance should be used only when necessary.

However, this is a bit simplistic. I believe that the idea that composition should be used
whenever possible hides the real issue, which might simply be that composition is more

146 Chapter 7 Mastering Inheritance and Composition

appropriate in more cases than inheritance—not that it should be used whenever possi-
ble.The fact that composition might be more appropriate in most cases does not mean
that inheritance is evil. Use both composition and inheritance, but only in their proper
contexts.

In earlier chapters, the concepts of abstract classes and Java interfaces arose several
times. In Chapter 8, we will explore the concept of development contracts and how ab-
stract classes and Java interfaces are used to satisfy these contracts.

References
Booch, Grady, et al. Object-Oriented Analysis and Design with Applications, 3rd ed.Addison-

Wesley, 2007. Boston, MA.
Meyers, Scott. Effective C++, 3rd ed.Addison-Wesley Professional, 2005. Boston, MA.
Coad, Peter, and Mark Mayfield. Java Design. Prentice-Hall, 1997. Upper Saddle River

New Jersey.
Gilbert, Stephen, and Bill McCarty. Object-Oriented Design in Java.The Waite Group Press,

1998. Berkeley, CA.

Example Code Used in This Chapter
The following code is presented in C# .NET and VB .NET.These examples correspond
to the Java code that is listed inside the chapter itself.

The TestShape Example: C# .NET

using System;

namespace TestShape

{

public class TestShape

{

public static void Main()

{

Circle circle = new Circle();

Rectangle rectangle = new Rectangle();

circle.draw();

rectangle.draw();

}

}

147Example Code Used in This Chapter

public abstract class Shape

{

public abstract void draw();

}

public class Circle : Shape{

public override void draw() {

Console.WriteLine(“I am drawing a Circle”);

}

}

public class Rectangle : Shape

{

public override void draw()

{

Console.WriteLine(“I am drawing a Rectangle”);

}

}

public class Star : Shape

{

public override void draw()

{

Console.WriteLine(“I am drawing a Star”);

}

}

public class Triangle : Shape

{

public override void draw()

{

148 Chapter 7 Mastering Inheritance and Composition

Console.WriteLine(“I am drawing a Triangle”);

}

}

}

The TestShape Example: VB .NET

Module TestShape

Sub Main()

Dim myCircle As New Circle()

Dim myRectangle As New Rectangle()

myCircle.draw()

myRectangle.draw()

System.Console.ReadLine()

End Sub

End Module

Public MustInherit Class Shape

Public MustOverride Function draw()

End Class

Public Class Circle

Inherits Shape

Public Overrides Function draw()

System.Console.WriteLine(“I am drawing a Circle”)

End Function

End Class

Public Class Rectangle

149Example Code Used in This Chapter

Inherits Shape

Public Overrides Function draw()

System.Console.WriteLine(“I am drawing a Rectangle”)

End Function

End Class

Public Class Star

Inherits Shape

Public Overrides Function draw()

System.Console.WriteLine(“I am drawing a Star”)

End Function

End Class

Public Class Triangle

Inherits Shape

Public Overrides Function draw()

System.Console.WriteLine(“I am drawing a Triangle”)

End Function

End Class

This page intentionally left blank

8
Frameworks and Reuse:

Designing with Interfaces and
Abstract Classes

Chapter 7,“Mastering Inheritance and Composition,” explains how inheritance and
composition play major roles in the design of object-oriented (OO) systems.This chapter
expands on this theme and introduces the concepts of a Java interface and an abstract
class.

Java interfaces and abstract classes are a powerful mechanism for code reuse, providing
the foundation for a concept I call contracts.This chapter covers the topics of code reuse,
frameworks, contracts, Java interfaces, and abstract classes.At the end of the chapter, we’ll
work through an example of how all these concepts can be applied to a real-world situa-
tion.

Code: To Reuse or Not to Reuse?
You have been dealing with the issue of code reuse since you took your first program-
ming class or wrote your first line of code. Many software development paradigms have
code reuse as a major component. Since the dawn of computer software, the concept of
reusing code has been reinvented several times.The OO paradigm is no different. One of
the major advantages touted by OO proponents is that if you write code properly the
first time, you can reuse it to your heart’s content.

This is only true to a certain degree.As with all design approaches, the utility and the
reusability of code depends on how well it was designed and implemented. OO design
does not hold the patent on code reuse.There is nothing stopping anyone from writing
very robust and reusable code in a non–OO language. Certainly, there are countless num-
bers of routines and functions, written in structured languages such as COBOL C and
traditional VB, that are of high quality and quite reusable.

Thus, it is clear that following the OO paradigm is not the only way to develop
reusable code. However, the OO approach does provide several mechanisms for facilitat-

152 Chapter 8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes

ing the development of reusable code. One way to create reusable code is to create frame-
works. In this chapter, we focus on using interfaces and abstract classes to create frame-
works and encourage reusable code.

What Is a Framework?
Hand-in-hand with the concept of code reuse is the concept of standardization, which is
sometimes called plug-and-play.The idea of a framework revolves around these plug-and-
play and reuse principles. One of the classic examples of a framework is a desktop appli-
cation. Let’s take an office suite application as an example.The document editor that I am
currently using (Microsoft Word) has a menu bar that includes multiple menu options.
These options are similar to those in the presentation package (Microsoft PowerPoint)
and the spreadsheet software (Microsoft Excel) that I also have open. In fact, the first six
menu items (File, Edit,View, Insert, Format, and Tools) are the same in all three programs.
Not only are the menu options similar, but the first toolbar looks remarkably alike as well
(New, Open, Save, and so on). Below the toolbars is the document area—whether it be
for a document, a presentation, or a spreadsheet.The common framework makes it easier
to learn various applications within the office suite. It also makes a developer’s life easier
by allowing maximum code reuse, not to mention that fact that we can reuse portions of
the design as well.

The fact that all these menu bars have a similar look and feel is obviously not an acci-
dent. In fact, when you develop in most integrated development environments, on a cer-
tain platform like Microsoft Windows, for example, you get certain things without having
to create them yourself.When you create a window in a Windows environment, you get
elements like the main title bar and the file close button in the top-right corner.Actions
are standardized as well—when you double-click the main title bar, the screen always
minimizes/maximizes.When you click the close button in the top-right corner, the ap-
plication always terminates.This is all part of the framework. Figure 8.1 is a screenshot of
a word processor. Note the menu bars, toolbars, and other elements that are part of the
framework.

A word processing framework generally includes operations such as creating docu-
ments, opening documents, saving documents, cutting text, copying text, pasting text,
searching through documents, and so on.To use this framework, a developer must use a
predetermined interface to create an application.This predetermined interface conforms
to the standard framework, which has two obvious advantages. First, as we have already
seen, the look and feel are consistent, and the end users do not have to learn a new
framework. Second, a developer can take advantage of code that has already been written
and tested (and this testing issue is a huge advantage).Why write code to create a brand
new Open dialog when one already exists and has been thoroughly tested? In a business
setting, when time is critical, people do not want to have to learn new things unless it is
absolutely necessary.

153What Is a Contract?

Figure 8.1 A word processing framework.

Code Reuse Revisited
In Chapter 7, we talked about code reuse as it pertains to inheritance—basically one class
inheriting from another class. This chapter is about frameworks and reusing whole or partial
systems.

The obvious question is this: If you need a dialog box, how do you use the dialog box
provided by the framework? The answer is simple:You follow the rules that the framework
provides you.And where might you find these rules? The rules for the framework are
found in the documentation.The person or persons who wrote the class, classes, or class
libraries should have provided documentation on how to use the public interfaces of the
class, classes, or class libraries (at least we hope). In many cases, this takes the form of the
application-programming interface (API).

For example, to create a menu bar in Java, you would bring up the API documentation
for the JMenuBar class and take a look at the public interfaces it presents. Figure 8.2 shows
a part of the Java API. By using these APIs, you can create a valid Java applet and conform
to required standards. If you follow these standards, your applet will be set to run in Java-
enabled browsers.

What Is a Contract?
In the context of this chapter, we will consider a contract to be any mechanism that re-
quires a developer to comply with the specifications of an Application Programming In-
terface (API). Often, an API is referred to as a framework.The online dictionary
Dictionary.com (http://www.dictionary.com) defines a contract as an agreement between

http://www.dictionary.com

154 Chapter 8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes

Figure 8.2 API documentation.

two or more parties for the doing or not doing of something specified—an agreement en-
forceable by law.”

This is exactly what happens when a developer uses an API—with the project man-
ager, business owner or industry standard providing the enforcement.When using con-
tracts, the developer is required to comply with the rules defined in the framework.This
includes issues like method names, number of parameters, and so on. In short, standards
are created to facilitate good development practices.

The Term Contract
The term contract is widely used in many aspects of business, including software develop-
ment. Do not confuse the concept presented here with other possible software design con-
cepts called contracts.

Enforcement is vital because it is always possible for a developer to break a contract.With-
out enforcement, a rogue developer could decide to reinvent the wheel and write her own
code rather than use the specification provided by the framework.There is little benefit to
a standard if people routinely disregard or circumvent it. In Java and the .NET languages,
the two ways to implement contracts are to use abstract classes and interfaces.

Abstract Classes
One way a contract is implemented is via an abstract class.An abstract class is a class that
contains one or more methods that do not have any implementation provided. Suppose
that you have an abstract class called Shape. It is abstract because you cannot instantiate it.
If you ask someone to draw a shape, the first thing they will most likely ask you is “What

155What Is a Contract?

+draw:void

Shape

+draw:void

Rectangle

+draw:void

Circle

Figure 8.3 An abstract class hierarchy.

kind of shape?”Thus, the concept of a shape is abstract. However, if someone asks you to
draw a circle, this does not pose quite the same problem because a circle is a concrete
concept.You know what a circle looks like.You also know how to draw other shapes, such
as rectangles.

How does this apply to a contract? Let’s assume that we want to create an application
to draw shapes. Our goal is to draw every kind of shape represented in our current design,
as well as ones that might be added later.There are two conditions we must adhere to.

First, we want all shapes to use the same syntax to draw themselves. For example, we
want every shape implemented in our system to contain a method called draw().Thus,
seasoned developers implicitly know that to draw a shape you simply invoke the draw()

method, regardless of what the shape happens to be.Theoretically, this reduces the
amount of time spent fumbling through manuals and cuts down on syntax errors.

Second, remember that it is important that every class be responsible for its own ac-
tions.Thus, even though a class is required to provide a method called draw(), that class
must provide its own implementation of the code. For example, the classes Circle and
Rectangle both have a draw() method; however, the Circle class obviously has code to
draw a circle, and as expected, the Rectangle class has code to draw a rectangle.When we
ultimately create classes called Circle and Rectangle, which are subclasses of Shape, these
classes must implement their own version of Draw (see Figure 8.3).

In this way, we have a Shape framework that is truly polymorphic.The Draw method can
be invoked for every single shape in the system, and invoking each shape produces a dif-
ferent result. Invoking the Draw method on a Circle object draws a circle, and invoking
the Draw method on a Rectangle object draws a rectangle. In essence, sending a message
to an object evokes a different response, depending on the object.This is the essence of
polymorphism.

circle.draw(); // draws a circle
rectangle.draw(); // draws a rectangle

156 Chapter 8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes

Let’s look at some code to illustrate how Rectangle and Circle conform to the Shape
contract. Here is the code for the Shape class:

public abstract class Shape {

public abstract void draw(); // no implementation

}

Note that the class does not provide any implementation for draw(); basically there is
no code and this is what makes the method abstract (providing any code would make the
method concrete).There are two reasons why there is no implementation. First, Shape
does not know what to draw, so we could not implement the draw() method even if we
wanted to.

Structured Analogy
This is an interesting issue. If we did want the Shape class to contain the code for all possi-
ble shape present and future, some conditional statement (like a Case statement) would be
required. This would be very messy and difficult to maintain. This is one example of where
the strength of an object-oriented design comes into play.

Second, we want the subclasses to provide the implementation. Let’s look at the Circle
and Rectangle classes:

public class Circle extends Shape {

public void Draw() {System.out.println (“Draw a Circle”};

}

public class Rectangle extends Shape {

public void Draw() {System.out.println (“Draw a Rectangle”};

}

Note that both Circle and Rectangle extend (that is, inherit from) Shape.Also notice
that they provide the actual implementation (in this case, the implementation is obviously
trivial). Here is where the contract comes in. If Circle inherits from Shape and fails to
provide a draw() method, Circle won’t even compile.Thus, Circle would fail to satisfy
the contract with Shape.A project manager can require that programmers creating shapes
for the application must inherit from Shape. By doing this, all shapes in the application
will have a draw() method that performs in an expected manner.

157What Is a Contract?

Circle
If Circle does indeed fail to implement a draw() method, Circle will be considered ab-
stract itself. Thus, yet another subclass must inherit from Circle and implement a draw()
method. This subclass would then become the concrete implementation of both Shape and
Circle.

Although the concept of abstract classes revolves around abstract methods, there is nothing
stopping Shape from actually providing some implementation. (Remember that the defi-
nition for an abstract class is that it contains one or more abstract methods—this implies that
an abstract class can also provide concrete methods.) For example, although Circle and
Rectangle implement the draw() method differently, they share the same mechanism for
setting the color of the shape. So, the Shape class can have a color attribute and a method
to set the color.This setColor() method is an actual concrete implementation, and
would be inherited by both Circle and Rectangle.The only methods that a subclass
must implement are the ones that the superclass declares as abstract.These abstract meth-
ods are the contract.

Caution
Be aware that in the cases of Shape, Circle, and Rectangle, we are dealing with a strict
inheritance relationship, as opposed to an interface, which we will discuss in the next sec-
tion. Circle is a Shape, and Rectangle is a Shape. This is an important point because
contracts are not used in cases of composition, or has-a relationships.

Some languages, such as C++, use only abstract classes to implement contracts; however.
Java and .NET have another mechanism that implements a contract called an interface.

Interfaces
Before defining an interface, it is interesting to note that C++ does not have a construct
called an interface. For C++, an abstract class provides the functionality of an interface.
The obvious question is this: If an abstract class can provide the same functionality as an
interface, why do Java and .NET bother to provide this construct called an interface?

Interface Terms
This is another one of those times when software terminology gets confusing. The term
interface used in earlier chapters is a term generic to OO development and refers to the pub-
lic interface to a class. The term interface used in this context refers to a syntactical lan-
guage construct that is specific to a programming language. It is important not to get the
two terms confused.

For one thing, C++ supports multiple inheritance, whereas Java and .NET do not.Al-
though Java and .NET classes can inherit from only one parent class, they can implement
many interfaces. Using more than one abstract class constitutes multiple inheritance; thus
Java and .NET cannot go this route.Although this explanation might specify the need for
Java and .NET interfaces, it does not really explain what an interface is. Let’s explore what
function an interface performs.

158 Chapter 8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes

+getName:String
+setName:void

interface
Nameable

Figure 8.4 A UML diagram of
a Java interface.

Circle
Because of these considerations, interfaces are often thought to be a workaround for the
lack of multiple inheritance. This is not technically true. Interfaces are a separate design
technique, and although they can be used to design applications that could be done with
multiple inheritance, they do not replace or circumvent multiple inheritance.

As with abstract classes, interfaces are a powerful way to enforce contracts for a frame-
work. Before we get into any conceptual definitions, it’s helpful to see an actual interface
UML diagram and the corresponding code. Consider an interface called Nameable, as
shown in Figure 8.4.

Note that Nameable is identified in the UML diagram as an interface, which distinguishes
it from a regular class (abstract or not).Also note that the interface contains two methods,
getName() and setName(). Here is the corresponding code:

public interface Nameable {

String getName();

void setName (String aName);

}

In the code, notice that Nameable is not declared as a class, but as an interface. Because
of this, both methods, getName() and setName(), are considered abstract and there is no
implementation provided.An interface, unlike an abstract class, can provide no implemen-
tation at all.As a result, any class that implements an interface must provide the implemen-
tation for all methods. For example, in Java, a class inherits from an abstract class, whereas a
class implements an interface.

Implementation Versus Definition Inheritance
Sometimes inheritance is referred to as implementation inheritance, and interfaces are
called definition inheritance.

159What Is a Contract?

Tying It All Together
If both abstract classes and interfaces provide abstract methods, what is the real difference
between the two? As we saw before, an abstract class provides both abstract and concrete
methods, whereas an interface provides only abstract methods.Why is there such a differ-
ence?

Assume that we want to design a class that represents a dog, with the intent of adding
more mammals later.The logical move would be to create an abstract class called Mammal:

public abstract class Mammal {

public void generateHeat() {System.out.println(“Generate heat”);}

public abstract void makeNoise();

}

This class has a concrete method called generateHeat(), and an abstract method
called makeNoise().The method generateHeat() is concrete because all mammals gen-
erate heat.The method makeNoise() is abstract because each mammal will make noise
differently.

Let’s also create a class called Head that we will use in a composition relationship:

public class Head {

String size;

public String getSize() {

return size;

}

public void setSize(String aSize) { size = aSize;}

}

Head has two methods: getSize() and setSize().Although composition might not
shed much light on the difference between abstract classes and interfaces, using composi-
tion in this example does illustrate how composition relates to abstract classes and inter-
faces in the overall design of an object-oriented system. I feel that this is important
because the example is more complete. Remember that there are two ways to build object
relationships: the is-a relationship, represented by inheritance, and the has-a relationship,
represented by composition.The question is: where does the interface fit in?

160 Chapter 8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes

+getName:String
+setName:void

interface
Nameable

type: String

+getType:String
+setType:void

Mammal

name: String

+getName:String
+setName:void

Dog

size: String

+getSize:String
+setSize:void

Head

Figure 8.5 A UML diagram of the sample code.

Compiling This Code
If you want to compile this Java code, make sure that you set classpath to the current di-
rectory, or you can use the following code:
javac -classpath . Nameable.java

javac -classpath . Mammal.java

javac -classpath . Head.java

javac -classpath . Dog.java

To answer this question and tie everything together, let’s create a class called Dog that is a
subclass of Mammal, implements Nameable, and has a Head object (see Figure 8.5).

In a nutshell, Java and .NET build objects in three ways: inheritance, interfaces, and com-
position. Note the dashed line in Figure 8.5 that represents the interface.This example il-
lustrates when you should use each of these constructs.When do you choose an abstract
class? When do you choose an interface? When do you choose composition? Let’s explore
further.

You should be familiar with the following concepts:

n Dog is a Mammal, so the relationship is inheritance.
n Dog implements Nameable, so the relationship is an interface.
n Dog has a Head, so the relationship is composition.

The following code shows how you would incorporate an abstract class and an interface
in the same class.

public class Dog extends Mammal implements Nameable {

161What Is a Contract?

String name;

Head head;

public void makeNoise(){System.out.println(“Bark”);}

public void setName (String aName) {name = aName;}

public String getName () {return (name);}

}

After looking at the UML diagram, you might come up with an obvious question:
Even though the dashed line from Dog to Nameable represents an interface, isn’t it still in-
heritance? At first glance, the answer is not simple.Although interfaces are a special type of
inheritance, it is important to know what special means. Understanding these special differ-
ences are key to a strong object-oriented design.

Although inheritance is a strict is-a relationship, an interface is not quite. For example:

n A dog is a mammal.
n A reptile is not a mammal

Thus, a Reptile class could not inherit from the Mammal class. However, an interface tran-
scends the various classes. For example:

n A dog is nameable.
n A lizard is nameable.

The key here is that classes in a strict inheritance relationship must be related. For exam-
ple, in this design, the Dog class is directly related to the Mammal class.A dog is a mammal.
Dogs and lizards are not related at the mammal level because you can’t say that a lizard is a
mammal. However, interfaces can be used for classes that are not related.You can name a
dog just as well as you can name a lizard.This is the key difference between using an ab-
stract class and using an interface.

The abstract class represents some sort of implementation. In fact, we saw that Mammal
provided a concrete method called generateHeat(). Even though we do not know what
kind of mammal we have, we know that all mammals generate heat. However, an interface
models only behavior.An interface never provides any type of implementation, only be-
havior.The interface specifies behavior that is the same across classes that conceivably have
no connection. Not only are dogs nameable, but so are cars, planets, and so on.

The Compiler Proof
Can we prove or disprove that interfaces have a true is-a relationship? In the case of Java
(and this can also be done in C# or VB), we can let the compiler tell us. Consider the fol-
lowing code:

Dog D = new Dog();

Head H = D;

162 Chapter 8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes

When this code is run through the compiler, the following error is produced:

Test.java:6: Incompatible type for Identifier. Can’t convert Dog to Head. Head H =
D;

Obviously, a dog is not a head. Not only do we know this, but the compiler agrees.
However, as expected, the following code works just fine:

Dog D = new Dog();

Mammal M = D;

This is a true inheritance relationship, and it is not surprising that the compiler parses
this code cleanly because a dog is a mammal.

Now we can perform the true test of the interface. Is an interface an actual is-a rela-
tionship? The compiler thinks so:

Dog D = new Dog();

Nameable N = D;

This code works fine. So, we can safely say that a dog is a nameable entity.This is a sim-
ple but effective proof that both inheritance and interfaces constitute an is-a relationship.

Nameable Interface
An interface specifies certain behavior, but not the implementation. By implementing the
Nameable interface, you are saying that you will provide nameable behavior by implementing
methods called getName and setName. How you implement these methods is up to you. All
you have to do is to provide the methods.

Making a Contract
The simple rule for defining a contract is to provide an unimplemented method, via ei-
ther an abstract class or an interface.Thus, when a subclass is designed with the intent of
implementing the contract, it must provide the implementation for the unimplemented
methods in the parent class or interface.

As stated earlier, one of the advantages of a contract is to standardize coding conven-
tions. Let’s explore this concept in greater detail by providing an example of what happens
when coding standards are not used. In this case, there are three classes: Planet, Car, and
Dog. Each class implements code to name the entity. However, because they are all imple-
mented separately, each class has different syntax to retrieve the name. Consider the fol-
lowing code for the Planet class:

public class Dog extends Mammal implements Nameable {

String name;

Head head;

}

public class Planet {

163What Is a Contract?

String planetName;

public void getplanetName() {return planetName;};

}

Likewise, the Car class might have code like this:

public class Car {

String carName;

public String getCarName() { return carName;};

}

And the Dog class might have code like this:

public class Dog {

String dogName;

public String getDogName() { return dogName;};

}

The obvious issue here is that anyone using these classes would have to look at the
documentation (what a horrible thought!) to figure out how to retrieve the name in each
of these cases. Even though looking at the documentation is not the worst fate in the
world, it would be nice if all the classes used in a project (or company) would use the
same naming convention—it would make life a bit easier.This is where the Nameable in-
terface comes in.

The idea would be to make a contract for any type of class that needs to use a name.As
users of various classes move from one class to the other, they would not have to figure
out the current syntax for naming an object.The Planet class, the Car class, and the Dog
class would all have the same naming syntax.

To implement this lofty goal, we can create an interface (we can use the Nameable in-
terface that we used previously).The convention is that all classes must implement
Nameable. In this way, the users only have to remember a single interface for all classes
when it comes to naming conventions:

public interface Nameable {

public String getName();

public void setName(String aName);

}

164 Chapter 8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes

The new classes, Planet, Car, and Dog, should look like this:

public class Planet implements Nameable {

String planetName;

public String getName() {return planetName;}

public void setName(String myName) { planetName = myName;}

}

public class Car implements Nameable {

String carName;

public String getName() {return carName;}

public void setName(String myName) { carName = myName;}

}

public class Dog implements Nameable {

String dogName;

public String getName() {return dogName;}

public void setName(String myName) { dogName = myName;}

}

In this way, we have a standard interface, and we’ve used a contract to ensure that it is
the case.

There is one little issue that you might have thought about.The idea of a contract is
great as long as everyone plays by the rules, but what if some shady individual doesn’t
want to play by the rules (the rogue programmer)? The bottom line is that there is noth-
ing to stop someone from breaking the standard contract; however, in some cases, doing so
will get them in deep trouble.

On one level, a project manager can insist that everyone use the contract, just like
team members must use the same variable naming conventions and configuration man-
agement system. If a team member fails to abide by the rules, he could be reprimanded,
or even fired.

Enforcing rules is one way to ensure that contracts are followed, but there are instances
in which breaking a contract will result in unusable code. Consider the Java interface
Runnable. Java applets implement the Runnable interface because it requires that any class
implementing Runnable must implement a run() method.This is important because the
browser that calls the applet will call the run() method within Runnable. If the run()
method does not exist, things will break.

165An E-Business Example

System Plug-in-Points
Basically, contracts are “plug-in points” into your code.Anyplace where you want to make
parts of a system abstract, you can use a contract. Instead of coupling to objects of specific
classes, you can connect to any object that implements the contract.You need to be aware
of where contracts are useful; however, you can overuse them.You want to identify com-
mon features such as the Nameable interface, as discussed in this chapter. However, be
aware that there is a trade-off when using contracts.They might make code reuse more of
a reality, but they make things somewhat more complex.

An E-Business Example
It’s sometimes hard to convince a decision maker, who may have no development back-
ground, of the monetary savings of code reuse. However, when reusing code, it is pretty
easy to understand the advantage to the bottom line. In this section, we’ll walk through a
simple but practical example of how to create a workable framework using inheritance,
abstract classes, interfaces and composition.

An E-Business Problem
Perhaps the best way to understand the power of reuse is to present an example of how
you would reuse code. In this example, we’ll use inheritance (via interfaces and abstract
classes) and composition. Our goal is to create a framework that will make code reuse a
reality, reduce coding time, and reduce maintenance—all the typical software development
wish-list items.

Let’s start our own Internet business. Let’s assume that we have a client, a small pizza
shop called Papa’s Pizza. Despite the fact that it is a small, family-owned business, Papa re-
alizes that a Web presence can help the business in many ways. Papa wants his customers
to access his website, find out what Papa’s Pizza is all about, and order pizzas right from
the comfort of their browsers.

At the site we develop, customers will be able to access the website, select the products
they want to order, and select a delivery option and time for delivery.They can eat their
food at the restaurant, pick up the order, or have the order delivered. For example, a cus-
tomer decides at 3:00 that he wants to order a pizza dinner (with salads, breadsticks, and
drinks), to be delivered to his home at 6:00. Let’s say the customer is at work (on a break,
of course). He gets on the Web and selects the pizzas, including size, toppings, and crust;
the salads, including dressings; breadsticks; and drinks. He chooses the delivery option, and
requests that the food be delivered to his home at 6:00.Then he pays for the order by
credit card, gets a confirmation number, and exits.Within a few minutes he gets an email
confirmation as well.We will set up accounts so that when people bring up the site, they
will get a greeting reminding them of who they are, what their favorite pizza is, and what
new pizzas have been created this week.

When the software system is finally delivered, it is deemed a total success. For the next
several weeks, Papa’s customers happily order pizzas and other food and drinks over the

166 Chapter 8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes

foodOfferings:String[]

+getInventory:String[]
+buyInventory:void

pizzaShop

menuItems:String[]

+getInventory:String[]
+buyInventory:void

donutShop

+main:void

testDonutShop

+main:void

testPizzaShop

1 1

Figure 8.6 Applications on divergent paths.

Internet. During this rollout period, Papa’s brother-in-law, who owns a donut shop called
Dad’s Donuts, pays Papa a visit. Papa shows Dad the system, and Dad falls in love with it.
The next day, Dad calls our company and asks us to develop a Web-based system for his
donut shop.This is great, and exactly what we had hoped for. Now, how can we leverage
the code that we used for the pizza shop in the system for the donut shop?

And how many more small businesses, besides Papa’s Pizza and Dad’s Donuts, could
take advantage of our framework to get on the Web? If we can develop a good, solid
framework, then we will be able to efficiently deliver Web-based systems at lower costs
than we were able to do before.There will also be an added advantage that the code will
have been tested and implemented previously, so debugging and maintenance should be
greatly reduced.

The Non-Reuse Approach
There are many reasons the concept of code reuse has not been as successful as some soft-
ware developers would like. First, many times reuse is not even considered when develop-
ing a system. Second, even when reuse is entered into the equation, the issues of schedule
constraints, limited resources, and budgetary concerns often short-circuit the best inten-
tions.

In many instances, code ends up highly coupled to the specific application for which it
was written.This means that the code within the application is highly dependent on other
code within the same application.

A lot of code reuse is the result of simply using cut, copy, and paste operations.While
one application is open in a text editor, you would copy code and then paste it into an-
other application. Sometimes certain functions or routines can be used without any
change.As is unfortunately often the case, even though most of the code may remain
identical, a small bit of code must change to work in a specific application.

For example, consider two totally separate applications, as represented by the UML dia-
gram in Figure 8.6.

167An E-Business Example

In this example, the applications testDonutShop and testPizzaShop are totally inde-
pendent code modules.The code is kept totally separate, and there is no interaction be-
tween the modules. However, these applications might use some common code. In fact,
some code might have been copied verbatim from one application to another.At some
point, someone involved with the project might decide to create a library of these shared
pieces of code to use in these and other applications. In many well-run and disciplined
projects, this approach works well. Coding standards, configuration management, change
management, and so on are all very well run. However, in many instances, this discipline
breaks down.

Anyone who is familiar with the software development process knows that when bugs
crop up and time is of the essence, there is the temptation to put some fixes or additions
into a system that are specific to the application currently in distress.This might fix the
problem for the distressed application, but could have unintended, possibly harmful, impli-
cations for other applications.Thus, in situations like these, the initially shared code can di-
verge, and separate code bases must be maintained.

For example, one day Papa’s website crashes. He calls us in a panic, and one of our de-
velopers is able to track down the problem.The developer fixes the problem, knowing that
the fix works but is not quite sure why.The developer also does not know what other ar-
eas of the system the fix might inadvertently affect. So the developer makes a copy of the
code, strictly for use in the Papa’s Pizza system.This is affectionately named Version
2.01papa. Because the developer does not yet totally understand the problem and because
Dad’s system is working fine, the code is not migrated to the donut shop’s system.

Tracking Down a Bug
The fact that the bug turned up in the pizza system does not mean that it will also turn up in
the donut system. Even though the bug caused a crash in the pizza shop, the donut shop
might never encounter it. It may be that the fix to the pizza shop’s code is more dangerous
to the donut shop than the original bug.

The next week Dad calls up in a panic, with a totally unrelated problem.A developer fixes
it, again not knowing how the fix will affect the rest of the system, makes a separate copy
of the code, and calls it Version 2.03dad.This scenario gets played out for all the sites we
now have in operation.There are now a dozen or more copies of the code, with various
versions for the various sites.This becomes a mess.We have multiple code paths and have
crossed the point of no return.We can never merge them again. (Perhaps we could, but
from a business perspective, this would be costly.)

Our goal is to avoid the mess of the previous example.Although many systems must
deal with legacy issues, fortunately for us, the pizza and donut applications are brand-new
systems.Thus, we can use a bit of foresight and design this system in a reusable manner. In
this way, we will not run into the maintenance nightmare just described.What we want to
do is factor out as much commonality as possible. In our design, we will focus on all the
common business functions that exist in a Web-based application. Instead of having multi-
ple application classes like testPizzaShop and testDonutShop, we can create a design
that has a class called Shop that all the applications will use.

168 Chapter 8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes

Notice that testPizzaShop and testDonutShop have similar interfaces, getInventory
and buyInventory.We will factor out this commonality and require that all applications
that conform to our Shop framework implement getInventory and buyInventory

methods.This requirement to conform to a standard is sometimes called a contract. By ex-
plicitly setting forth a contract of services, you isolate the code from a single implementa-
tion. In Java, you can implement a contract by using an interface or an abstract class. Let’s
explore how this is accomplished.

An E-Business Solution
Now let’s show how to use a contract to factor out some of the commonality of these sys-
tems. In this case, we will create an abstract class to factor out some of the implementa-
tion, and an interface (our familiar Nameable) to factor out some behavior.

Our goal is to provide customized versions of our Web application, with the following
features:

n An interface, called Nameable, which is part of the contract.
n An abstract class called Shop, which is also part of the contract.
n A class called CustList, which we use in composition.
n A new implementation of Shop for each customer we service.

The UML Object Model
The newly created Shop class is where the functionality is factored out. Notice in Figure
8.7 that the methods getInventory and buyInventory have been moved up the hierar-
chy tree from DonutShop and PizzaShop to the abstract class Shop. Now, whenever we
want to provide a new, customized version of Shop, we simply plug in a new implementa-
tion of Shop (such as a grocery shop). Shop is the contract that the implementations must
abide by:

public abstract class Shop {

CustList customerList;

public void CalculateSaleTax() {

System.out.println(“Calculate Sales Tax”);

}

public abstract String[] getInventory();

public abstract void buyInventory(String item);

}

169An E-Business Example

+getName:String
+setName:void

interface
Nameable

+calculateSaleTax:void
+getInventory:String[]
+buyInventory:void

Shop
+name:String

CustList

+findCust:String
+addCust:void

companyName:String
menuItems:String[]

DonutShop

+getInventory:String[]
+buyInventory:void
+getName:String
+setName:void

companyName:String
foodOfferings:String[]

PizzaShop

+getInventory:String[]
+buyInventory:void
+getName:String
+setName:void

Figure 8.7 A UML diagram of the Shop system.

To show how composition fits into this picture, the Shop class has a customer list.Thus,
the class CustList is contained within Shop:

public class CustList {

String name;

public String findCust() {return name;}

public void addCust(String Name){}

}

To illustrate the use of an interface in this example, an interface called Nameable is
defined:

public interface Nameable {

public abstract String getName();

public abstract void setName(String name);

}

We could potentially have a large number of different implementations, but all the rest
of the code (the application) is the same. In this small example, the code savings might not
look like a lot. But in a large, real-world application, the code savings is significant. Let’s
take a look at the donut shop implementation:

public class DonutShop extends Shop implements Nameable {

String companyName;

170 Chapter 8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes

String[] menuItems = {

“Donuts”,

“Muffins”,

“Danish”,

“Coffee”,

“Tea”

};

public String[] getInventory() {

return menuItems;

}

public void buyInventory(String item) {

System.out.println(“\nYou have just purchased “ + item);

}

public String getName(){

return companyName;

}

public void setName(String name){

companyName = name;

}

}

The pizza shop implementation looks very similar:

public class PizzaShop extends Shop implements Nameable {

String companyName;

String[] foodOfferings = {

“Pizza”,

“Spaghetti”,

“Garden Salad”,

“Anitpasto”,

“Calzone”

}

public String[] getInventory() {

171An E-Business Example

return foodOfferings;

}

public void buyInventory(String item) {

System.out.println(“\nYou have just purchased “ + item);

}

public String getName(){

return companyName;

}

public void setName(String name){

companyName = name;

}

}

Unlike the initial case, where there are a large number of customized applications, we
now have only a single primary class (Shop) and various customized classes (PizzaShop,
DonutShop).There is no coupling between the application and any of the customized
classes.The only thing the application is coupled to is the contract (Shop).The contract
specifies that any implementation of Shop must provide an implementation for two meth-
ods, getInventory and buyInventory. It also must provide an implementation for
getName and setName that relates to the interface Nameable that is implemented.

Although this solution solves the problem of highly coupled implementations, we still
have the problem of deciding which implementation to use.With the current strategy, we
would still have to have separate applications. In essence, you have to provide one applica-
tion for each Shop implementation. Even though we are using the Shop contract, we still
have the same situation as before we used the contract:

DonutShop myShop= new DonutShop();

PizzaShop myShop = new PizzaShop ();

How do we get around this problem? We can create objects dynamically. In Java, we
can use code like this:

String className = args[0];

Shop myShop;

myShop = (Shop)Class.forName(className).newInstance();

172 Chapter 8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes

In this case, you set className by passing a parameter to the code. (There are other
ways to set className, such as by using a system property.)

Let’s look at Shop using this approach. (Note that there is no exception handling and
nothing else besides object instantiation.)

class TestShop {

public static void main (String args[]) {

Shop shop = null;

String className = args[0];

System.out.println(“Instantiate the class:” + className + “\n”);

try {

// new pizzaShop();

shop = (Shop)Class.forName(className).newInstance();

} catch (Exception e) {

e.printStackTrace();

}

String[] inventory = shop.getInventory();

// list the inventory

for (int i=0; i<inventory.length; i++) {

System.out.println(“Argument” + i + “ = “ + inventory[i]);

}

// buy an item

shop.buyInventory(Inventory[1]);

}

}

173Example Code Used in This Chapter

Compiling this Code
If you who want to compile this Java code, make sure to set classpath to the current
directory:

javac -classpath . Nameable.java
javac -classpath . Shop.java
javac -classpath . CustList.java
javac -classpath . DonutShop.java
javac -classpath . PizzaShop.java
javac -classpath . TestShop.java

To run the code to test the pizza shop application, execute the following command:

java -classpath . TestShop PizzaShop

In this way, we can use the same application code for both PizzaShop and DonutShop. If
we add a GroceryShop application, we only have to provide the implementation and the
appropriate string to the main application. No application code needs to change.

Conclusion
When designing classes and object models, it is vitally important to understand how the
objects are related to each other.This chapter discusses the primary topics of building ob-
jects: inheritance, interfaces, and composition. In this chapter, you have learned how to
build reusable code by designing with contracts.

In Chapter 9,“Building Objects,” we complete our OO journey and explore how ob-
jects that might be totally unrelated can interact with each other.

References
Booch, Grady, et al. Object-Oriented Analysis and Design with Applications, 3rd ed.Addison-

Wesley, 2007. Boston, MA.
Meyers, Scott. Effective C++, 3rd ed.Addison-Wesley Professional, 2005. Boston, MA.
Coad, Peter, and Mark Mayfield. Java Design. Prentice-Hall, 1997. Upper Saddle River

New Jersey.

Example Code Used in This Chapter
The following code is presented in C# .NET and VB .NET.These examples correspond
to the Java code that is listed inside the chapter itself.

The TestShape Example: C# .NET

using System;

using System.Collections.Generic;

using System.Linq;

174 Chapter 8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes

using System.Text;

namespace TestShop

{

class TestShop

{

public static void Main()

{

Shop shop = null;

Console.WriteLine(“Instantiate the PizzaShop class:” + “\n”);

try

{

// new pizzaShop();

shop = new PizzaShop();

}

catch (Exception e)

{

}

string[] inventory = shop.getInventory();

// list the inventory

for (int i = 0; i < 5; i++)

{

Console.WriteLine(“Argument” + i + “ = “ + inventory[i]);

}

// buy an item

shop.buyInventory(inventory[1]);

}

}

public abstract class Shop

{

CustList customerList;

public void CalculateSaleTax()

{

Console.WriteLine(“Calculate Sales Tax”);

}

public abstract string[] getInventory();

175Example Code Used in This Chapter

public abstract void buyInventory(string item);

}

public interface Nameable

{

String Name

{

get;

set;

}

}

public class PizzaShop : Shop, Nameable

{

string companyName;

string[] foodOfferings = {

“Pizza”,

“Spaghetti”,

“Garden Salad”,

“Anitpasto”,

“Calzone”

};

public override string[] getInventory()

{

return foodOfferings;

}

public override void buyInventory(string item)

{

Console.WriteLine(“\nYou have just purchased “ + item);

}

public String Name

{

get { return companyName; }

set { companyName = value; }

}

}

public class DonutShop : Shop, Nameable

{

string companyName;

176 Chapter 8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes

string[] menuItems = {

“Donuts”,

“Muffins”,

“Danish”,

“Coffee”,

“Tea”

};

public override string[] getInventory()

{

return menuItems;

}

public override void buyInventory(string item)

{

Console.WriteLine(“\nYou have just purchased “ + item);

}

public String Name

{

get { return companyName; }

set { companyName = value; }

}

}

public class CustList

{

string name;

public string findCust() { return name; }

public void addCust(string Name) { }

}

}

The TestShape Example: VB .NET

Module Module1

Sub Main()

Dim myShop As New DonutShop()

Dim inventory() As String

Dim ival As Integer

System.Console.WriteLine(“Instantiate the DonutShop class”)

177Example Code Used in This Chapter

inventory = myShop.getInventory()

For ival = 0 To 4

System.Console.Write(“Argument “)

System.Console.Write(ival)

System.Console.Write(“ = “)

System.Console.WriteLine(inventory(ival))

Next

myShop.buyInventory(inventory(1))

System.Console.ReadLine()

End Sub

End Module

Public MustInherit Class Shop

Dim myCustList As New CustList()

Public Function CalculateSaleTax()

System.Console.WriteLine(“Calculate Sales Tax”)

Return Nothing

End Function

Public MustOverride Function getInventory() As String()

Public MustOverride Function buyInventory(ByVal i As String)

End Class

Interface Nameable

Property Name() As String

End Interface

Public Class DonutShop

Inherits Shop

Implements Nameable

178 Chapter 8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes

Dim companyName As String

Dim menuItems() As String = {“Donuts”, “Muffins”, “Danish”, “Coffee”, “Tea”}

Public Overrides Function getInventory() As String()

Return menuItems

End Function

Public Overrides Function buyInventory(ByVal item As String)

System.Console.WriteLine(“You have just purchased “ + item)

Return Nothing

End Function

Private strName As String

Public Property Name() As String Implements Nameable.Name

Get

Return strName

End Get

Set(ByVal value As String)

strName = value

End Set

End Property

End Class

Public Class CustList

Dim name As String

Public Function findCust() As String

Return name

End Function

Public Function addCust(ByVal c As String)

Return Nothing

End Function

End Class

9
Building Objects

The previous two chapters cover the topics of inheritance and composition. In Chapter
7,“Mastering Inheritance and Composition,” we learned that inheritance and composi-
tion represent the primary ways to build objects. In Chapter 8,“Frameworks and Reuse:
Designing with Interfaces and Abstract Classes,” we learned that there are varying degrees
of inheritance and how inheritance, interfaces, abstract classes, and composition all fit to-
gether.

This chapter covers the issue of how objects are related to each other in an overall de-
sign.You might say that this topic was already introduced, and you would be correct. Both
inheritance and composition represent ways that objects interact. However, inheritance
and composition have one significant difference in the way objects are built.When inher-
itance is used, the end result is, at least conceptually, a single class that incorporates all of
the behaviors and attributes of the inheritance hierarchy.When composition is used, one
or more classes are used to build another class.

Although it is true that inheritance is a relationship between two classes, what is really
happening is that a parent is created that incorporates the attributes and methods of a
child class. Let’s revisit the example of the Person and Employee classes (see Figure 9.1).

Although there are indeed two classes here, the relationship is not simply interaction—
it is inheritance. Basically, an employee is a person.An Employee object does not send a
message to a Person object.An Employee object does need the services of a Person ob-
ject.This is because an Employee object is a Person object.

However, composition is a different situation. Composition represents interactions be-
tween distinct objects. So, although Chapter 8 primarily covers the different flavors of in-
heritance, this chapter delves into the various flavors of composition and how objects
interact with each other.

Composition Relationships
We have already seen that composition represents a part of a whole.Although the inheri-
tance relationship is stated in terms of is-a, composition is stated in terms of has-a.We
know intuitively that a car “has-a” steering wheel (see Figure 9.2).

180 Chapter 9 Building Objects

–Name:String
–SSNum:String
–Age:int
+getName:String
+getSSNum:String
+getAge:int
+setName:void
+setSSNum:void
+setAge:void

Person

–CompanyID:String
–Title:String
–StartDate:Date
+getCompanyID:String
+getTitle:String
+getStartDate:Date
+setCompanyID:void
+setTitle:void
+setStarDate:void

Employee

Figure 9.1 An inheritance relationship.

A Car has a Steering Wheel

Figure 9.2 A composition relationship.

Is-a and Has-a
Please forgive my grammar: For consistency, I will stick with “has a engine,” even though
“has an engine” might be grammatically correct. I do this because I want to simply state the
rules as “is-a” and “has-a.”

The reason to use composition is that it builds systems by combining less complex parts.
This is a common way for people to approach problems. Studies show that even the best

181Composition Relationships

of us can keep, at most, seven chunks of data in our short-term memory at one time.Thus
we like to use abstract concepts. Instead of saying that we have a large unit with a steering
wheel, four tires, an engine, and so on, we say that we have a car.This makes it easier for
us to communicate and keep things clear in our heads.

Composition also helps in other ways, such as making parts interchangeable. If all steer-
ing wheels are the same, it does not matter which specific steering wheel is installed in a
specific car. In software development, interchangeable parts mean reuse. In Chapters 7 and
8 of their book, Object-Oriented Design in Java, Stephen Gilbert and Bill McCarty present
many examples of associations and composition in much more detail. I highly recommend
referencing this material for a more in-depth look into these subjects. Here we address
some of the more fundamental points of these concepts and explore some variations of
their examples.

Building in Phases
Another major advantage in using composition is that systems and subsystems can be built
independently, and perhaps more importantly, tested and maintained independently.

There is no question that today’s software systems are quite complex.To build quality
software, you must follow one overriding rule to be successful: Keep things as simple as
possible. For large software systems to work properly and be easily maintained, they must
be broken up into smaller, more manageable parts. How do you accomplish this? In a
1962 article titled “The Architecture of Complexity,” Nobel Prize winner Herbert Simon
noted the following thoughts regarding stable systems:

n “Stable complex systems usually take the form of a hierarchy, where each
system is built from simpler subsystems, and each subsystem is built from
simpler subsystems still.”—You might already be familiar with this principle be-
cause it forms the basis for functional decomposition, the method behind proce-
dural software development. In object-oriented design, you apply the same
principles to composition—building complex objects from simpler pieces.

n “Stable, complex systems are nearly decomposable.”—This means you can
identify the parts that make up the system and can tell the difference between inter-
actions between the parts and inside the parts. Stable systems have fewer links be-
tween their parts than they have inside their parts.Thus, a modular stereo system,
with simple links between the speakers, turntable, and amplifier, is inherently more
stable than an integrated system, which isn’t easily decomposable.

n “Stable complex systems are almost always composed of only a few dif-
ferent kinds of subsystems, arranged in different combinations.”—Those
subsystems, in turn, are generally composed of only a few different kinds of parts.

n “Stable systems that work have almost always evolved from simple sys-
tems that worked.”—Rather than build a new system from scratch—reinventing
the wheel—the new system builds on the proven designs that went before it.

182 Chapter 9 Building Objects

Cassette

Receiver CD Player

Figure 9.3 Building, testing, and verifying a complete
system one step at a time.

In our stereo example (see Figure 9.3), suppose the stereo system was totally integrated
and was not built from components (that is, that the stereo system was one big black-box
system). In this case, what would happen if the CD player broke and became unusable?
You would have to take in the entire system for repair. Not only would this be more
complicated and expensive, but you would not have the use of any of the other compo-
nents.

This concept becomes very important to languages such as Java and those included in the
.NET architecture. Because objects are dynamically loaded, decoupling the design is quite
important. For example, if you distribute a Java application and one of the class files needs
to be re-created (for bug fixes or maintenance), you would only be required to redistrib-

183Types of Composition

ute that particular class file. If all code was in a single file, the entire application would
need to be redistributed.

Suppose the system is broken up into components rather than a single unit. In this case,
if the CD player broke, you could disconnect the CD player and simply take it in for re-
pair. (Note that all the components are connected by patch cords.) This would obviously
be less complicated and less expensive, and it would take less time than having to deal
with a single, integrated unit.As an added benefit, you could still use the rest of the sys-
tem.You could even buy another CD player because it is a component.The repairperson
could then plug your broken CD player into his repair systems to test and fix it.All in all,
the component approach works quite well. Composition is one of the primary strategies
that you, as a software designer, have in your arsenal to fight software complexity.

One major advantage of using components is that you can use components that were
built by other developers, or even third-party vendors. However, using a software compo-
nent from another source requires a certain amount of trust.Third-party components
must come from a reliable source, and you must feel comfortable that the software is prop-
erly tested, not to mention that it must perform the advertised functions properly.There
are still many who would rather build their own than trust components built by others.

Types of Composition
Generally, there are two types of composition: association and aggregation. In both cases,
these relationships represent collaborations between the objects.The stereo example we
just used to explain one of the primary advantages of composition actually represents an
association.

Is Composition a Form of Association?
Composition is another area in OO technologies where there is a question of which came
first, the chicken or the egg. Some texts say that composition is a form of association, and
some say that an association is a form of composition. In any event, in this book, we con-
sider inheritance and composition the two primary ways to build classes. Thus, in this book,
an association is a form of composition.

All forms of composition include a has-a relationship. However, there are subtle differ-
ences between associations and aggregations based on how you visualize the parts of the
whole. In an aggregation, you normally see only the whole, and in associations, you nor-
mally see the parts that make up the whole.

Aggregations
Perhaps the most intuitive form of composition is aggregation.Aggregation means that a
complex object is composed of other objects.A TV set is a clean, neat package that you
use for entertainment.When you look at your TV, you see a single TV. Most of the time,
you do not stop and think about the fact that the TV contains some transistors, a picture
tube, a tuner, and so on. Sure, you see a switch to turn the set on and off, and you cer-
tainly see the picture tube. However, this is not the way people normally think of TVs.

184 Chapter 9 Building Objects

Car

StereoEngine

Pistons SparkPlugs Radio

Tuner

Cassette Handle

Door

Figure 9.4 An aggregation hierarchy for a car.

When you go into an appliance store, the salesperson does not say,“Let me show you this
aggregation of transistors, a picture tube, a tuner, and so on.”The salesperson says,“Let me
show you this TV.”

Similarly, when you go to buy a car, you do not pick and choose all the individual
components of the car.You do not decide which spark plugs to buy or what door handles
to buy.You go to buy a car. Of course, you do choose some options, but for the most part,
you choose the car as a whole, a complex object made up of many other complex and
simple objects (see Figure 9.4).

Associations
Although aggregations represent relationships where you normally only see the whole, as-
sociations present both the whole and the parts.As stated in the stereo example, the vari-
ous components are presented separately and connect to the whole by use of patch cords

185Types of Composition

Figure 9.5 Associations.

(the cords that connect the various components). Each one of the stereo components has
a user interface that is manipulated independently.We can look back at the example in
Chapter 2,“How to Think in Terms of Objects,” at the example of designing for minimal
interfaces.

Using a computer system as an example (see Figure 9.5), the whole is the computer
system.The components are the monitor, keyboard, mouse, and main box. Each is a sepa-
rate object, but together they represent the whole of the computer system.The main
computer is using the keyboard, the mouse, and the monitor to delegate some of the
work. In other words, the computer box needs the service of a mouse, but does not have
the capability to provide this service by itself.Thus, the computer box requests the service
from a separate mouse via the specific port and cable connecting the mouse to the box.

Aggregation Versus Association
An aggregation is a complex object composed of other objects. An association is used when
one object wants another object to perform a service for it.

Using Associations and Aggregations Together
One thing you might have noticed in all the examples is that the dividing lines between
what is an association and what is an aggregation are blurred. Suffice it to say that many of
your most interesting design decisions will come down to whether to use associations or
aggregations.

For example, the computer system example used to describe association also contains
some aggregation.Although the interaction between the computer box, the monitor, the
keyboard, and the mouse is association, the computer box itself represents aggregation.You
see only the computer box, but it is actually a complex system made up of other objects,
including chips, motherboards, video cards, and so on.

Consider that an Employee object might be composed of an Address object and a
Spouse object.You might consider the Address object as an aggregation (basically a part
of the Employee object), and the Spouse object as an association.To illustrate, suppose
both the employee and the spouse are employees. If the employee is fired, the spouse is
still in the system, but the association is broken.

186 Chapter 9 Building Objects

Similarly, in the stereo example, the relationship between the receiver, the speakers, and
the CD player is association; however, each of these components are complex objects that
are made up of other objects.

In the car example, although the engine, sparkplugs, and doors represent composition,
the stereo also represents an association relationship.

No One Right Answer
As usual, there isn’t a single absolutely correct answer when it comes to making a design
decision. Design is not an exact science. Although we can make general rules to live by,
these rules are not hard and fast.

Avoiding Dependencies
When using composition, it is desirable to avoid making objects highly dependent on one
another. One way to make objects very dependent on each other is to mix domains. In
the best of all worlds, an object in one domain should not be mixed with an object in an-
other domain, except under certain circumstances.We can return again to the stereo ex-
ample to explain this concept.

By keeping the receiver and the CD player in separate domains, the stereo system is
easier to maintain. For example, if the CD component breaks, you can send the CD player
off to be repaired individually. In this case, the CD player and the MP3 player have sepa-
rate domains.This provides flexibility such as buying the CD player and the MP3 player
from separate manufacturers. So, if you decide you want to swap out the CD player with a
brand from another manufacturer, you can.

Sometimes there is a certain convenience in mixing domains.A good example of this
pertains to the existence of TV/VCR combinations. Granted, it is convenient to have
both in the same module. However, if the TV breaks, the VCR is unusable—at least as part
of the unit it was purchased in.

You need to determine what is more important in specific situations: whether you
want convenience or stability.There is no right answer. It all depends on the application
and the environment. In the case of the TV/VCR combination, we decided that the
convenience of the integrated unit far outweighed the risk of lower unit stability
(see Figure 9.6).

Mixing Domains
The convenience of mixing domains is a design decision. If the power of having a TV/VCR
combination outweighs the risk and potential downtime of the individual components, the
mixing of domains may well be the preferred design choice.

Cardinality
Gilbert and McCarty describe cardinality as the number of objects that participate in an
association and whether the participation is optional or mandatory.To determine cardinal-
ity, ask the following questions:

187Cardinality

More Convenient/Less Stable

TV part

VCR

Figure 9.6 Convenience versus stability.

n Which objects collaborate with which other objects?
n How many objects participate in each collaboration?
n Is the collaboration optional or mandatory?

For example, let’s consider the following example.We are creating an Employee class that
inherits from Person, and has relationships with the following classes:

n Division

n JobDescription

n Spouse

n Child

What do these classes do? Are they optional? How many does an Employee need?
n Division

n This object contains the information relating to the division that the em-
ployee works for.

n Each employee must work for a division, so the relationship is mandatory.
n The employee works for one, and only one, division.

n JobDescription

n This object contains a job description, most likely containing information
such as salary grade and salary range.

n Each employee must have a job description, so the relationship is mandatory.
n The employee can hold various jobs during the tenure at a company.Thus, an

employee can have many job descriptions.These descriptions can be kept as a

188 Chapter 9 Building Objects

Table 9.1 Cardinality of Class Associations

Optional/Association Cardinality Mandatory

Employee/Division 1 Mandatory

Employee/JobDescription 1...n Mandatory

Employee/Spouse 0...1 Optional

Employee/Child 0...n Optional

history if an employee changes jobs, or it is possible that an employee might
hold two different jobs at one time. For example, a supervisor might take on
an employee’s responsibilities if the employee quits and a replacement has not
yet been hired.

n Spouse

n In this simplistic example, the Spouse class contains only the anniversary date.
n An employee can be married or not married.Thus, a spouse is optional.
n An employee can have only one spouse.

n Child

n In this simple example, the Child class contains only the string FavoriteToy.
n An employee can have children or not have children.
n An employee can have no children or an infinite number of children (wow!).

You could make a design decision as to the upper limit of the number of chil-
dren that the system can handle.

To sum up,Table 9.1 represents the cardinality of the associations of the classes we just
considered.

Cardinality Notation
The notation of 0...1 means that an employee can have either zero or one spouse. The nota-
tion of 0...n means that an employee can have any number of children from zero to an unlim-
ited number. The n basically represents infinity.

Figure 9.7 shows the class diagram for this system. Note that in this class diagram, the car-
dinality is indicated along the association lines. Refer to Table 9.1 to see whether the asso-
ciation is mandatory.

189Cardinality

–Name:String
–SSNum:String
–Age:int
+getName:String
+getSSNum:String
+getAge:int
+setName:void
+setSSNum:void
+setAge:void

Person

–AnniversaryData:Date
+getAnniversaryDate:Date
+getAnniversaryDate:void

Spouse

–DivisionName:String
+getDivisionName:String
+setDivisionName:void

Division
–Description:String
+getDescription:String
+setDescription:void

JobDescription

–FavoriteToy:String
+getFavoriteToyString
+setFavoriteToy:void

Child
–CompanyID:String
–Title:String
–StartDate:Date
+getCompanyID:String
+getTitle:String
+getStartDate:Date
+setCompanyID:void
+setTitle:void
+setStartDate:void

Employee
0..1

1 1..n

0..n

Figure 9.7 Cardinality in a UML diagram.

Multiple Object Associations
How do we represent an association that might contain multiple objects (like 0 to many
children) in code? Here is the code for the Employee class:

import java.util.Date;

public class Employee extends Person{

private String CompanyID;

private String Title;

private Date StartDate;

private Spouse spouse;

private Child[] child;

private Division division;

private JobDescription[] jobDescriptions;

190 Chapter 9 Building Objects

Object Mary

public String getSpouse(Employee e) {
 return Spouse;

}

OOPS!! Mary has no spouse

Must check all optional associations for null!!!

XX
Figure 9.8 Checking all optional associations.

public String getCompanyID() {return CompanyID;}

public String getTitle() {return Title;}

public Date getStartDate() {return StartDate;}

public void setCompanyID(String CompanyID) {}

public void setTitle(String Title) {}

public void setStartDate(int StartDate) {}

}

Note that the classes that have a one-to-many relationship are represented by arrays in
the code:

private Child[] child;

private JobDescription[] jobDescriptions;

Optional Associations
One of the most important issues when dealing with associations is to make sure that your
application is designed to check for optional associations.This means that your code must
check to see whether the association is null.

Suppose in the previous example, your code assumes that every employee has a spouse.
However, if one employee is not married, the code will have a problem (see Figure 9.8). If
your code does indeed expect a spouse to exist, it may well fail and leave the system in an
unstable state.The bottom line is that the code must check for a null condition, and must
handle this as a valid condition.

191Tying It All Together: An Example

For example, if no spouse exists, the code must not attempt to invoke a spouse method.
This could lead to an application failure.Thus, the code must be able to process an
Employee object that has no spouse.

Tying It All Together: An Example
Let’s work on a simple example that will tie the concepts of inheritance, interfaces, com-
position, associations, and aggregations together into a single, short system diagram.

Consider the example used in Chapter 8, with one addition:We will add an Owner class
that will take the dog out for walks.

Recall that the Dog class inherits directly from the Mammal class.The solid arrow repre-
sents this relationship between the Dog class and the Mammal class in Figure 9.9.The
Nameable class is an interface that Dog implements, which is represented by the dashed ar-
row from the Dog class to the Nameable interface.

In this chapter, we are mostly concerned with associations and aggregations.The relation-
ship between the Dog class and the Head class is considered aggregation because the head
is actually part of the dog.The cardinality on the line connecting the two class diagrams
specifies that a dog can have only a single head.

The relationship between the Dog class and the Owner class is association.The owner is
clearly not part of the dog, or vice versa, so we can safely eliminate aggregation. However,
the dog does require a service from the owner—the act of taking him on a walk.The car-
dinality on the line connecting the Dog and Owner classes specifies that a dog can have one
or more owners (for example, a wife and husband can both be considered owners, with
shared responsibility for walking the dog).

These relationships—inheritance, interfaces, composition, associations, and aggrega-
tions—represent the bulk of the design work you will encounter when designing OO
systems.

+getName:String
+setName:void

interface
Nameable

type: String

+getType:String
+setType:void

Mammal

name: String

+getName:String
+setName:void
+goForWalk:void

Dog

name: String

+getName:String
+walkDog:void

1..*

Owner

size: String

+getSize:String
+setSize:void

1

Head

Figure 9.9 A UML diagram for the Dog example.

192 Chapter 9 Building Objects

Where Is the Head
You might decide that it makes sense to attach the Head class to the Mammal class instead
of the Dog class, since all mammals supposedly have a head. For this model, I was using
the Dog class as the focal point of the example, so that is why I attached the Head to the
Dog itself.

Conclusion
In this chapter, we have explored some of the finer points of composition and its two pri-
mary types: aggregation and association.Whereas inheritance represents a new kind of al-
ready-existing object, composition represents the interactions between various objects.

The last three chapters have covered the basics of inheritance and composition. Using
these concepts and your skills in the software development process, you are on your way
to designing solid classes and object models.

This book has covered a lot of material.The intent is to provide a high-level overview
to the concepts involved in the OO thought process. I hope this book has whet your ap-
petite for this subject and you will seek out other books that go into far more detail.
Many of the individual topics covered in this book—such as UML and use cases—have
complete books devoted to them. Good hunting!

References
Booch, Grady, et al. Object-Oriented Analysis and Design with Applications, 3rd ed.Addison-

Wesley, 2007. Boston, MA.
Meyers, Scott. Effective C++, 3rd ed.Addison-Wesley Professional, 2005. Boston, MA.
Coad, Peter, and Mark Mayfield. Java Design. Prentice-Hall, 1997. Upper Saddle River,

New Jersey.
Gilbert, Stephen, and Bill McCarty. Object-Oriented Design in Java.The Waite Group Press,

1998. Berkeley, CA.

10
Creating Object

Models with UML

I believe very strongly that learning the fundamental OO concepts should come before
learning any specific modeling tools.Thus, the placement of this chapter was somewhat
problematic. In many ways, this chapter could go first, because the Unified Modeling
Language (UML) diagrams are present throughout this book, including in Chapter 1,“In-
troduction to Object-Oriented Concepts.” Finally, it was decided to place this chapter at
the end of the “conceptual” chapters, which I consider Chapters 1–9.The remaining
chapters cover application issues as well as concepts.

This chapter is a brief overview of the UML notation used in this book. It is not a
comprehensive tutorial on UML because that would require an entire book unto itself,
and there are many such books. For several good sources, see the references at the end of
this chapter. Because this book deals with fundamentals, the UML that is used only
scratches the surface of what UML actually offers.

In this book, the UML notation we are concerned with concerns modeling object-
oriented systems or, as I like to call it, object-modeling.This notation includes system mod-
eling using class diagrams. Many components of UML are not used in this book. For
example, because this book is concerned with object-models, UML constructs such as
State Chart Diagrams and Activity Diagrams are not covered.

Each of those topics could warrant a complete chapter or more.Again, the purpose of
this chapter is to provide a quick overview of object models and, specifically, class dia-
grams so that if you are unfamiliar with class diagrams, you can pick up the basics quickly.
With this introduction, the examples in the book will be more meaningful.

What Is UML?
UML, as its name implies, is a modeling language.The UML User Guide defines UML as
“a graphical language for visualizing, specifying, constructing and documenting the arti-
facts of a software-intensive system.” UML gives you a standard way to write the system’s

194 Chapter 10 Creating Object Models with UML

Cabbie
–companyName: String

+Cabbie:
+Cabbie:
+setName: void
+getName: String
+giveDirections: void
–turnRight: void
–turnLeft: void
+getCompanyName: String

–name: String
Attributes

Class Name

Constructors

Methods

Figure 10.1 A UML diagram of the Cabbie class.

blueprints. In a nutshell, UML offers a way to graphically represent and manipulate an ob-
ject-oriented (OO) software system. It is not only the representation of the design of a
system, but a tool to assist in this design.

UML is actually a synthesis of different modeling languages developed independently
by Grady Booch, James Rumbaugh, and Ivar Jacobson, affectionately called the Three
Amigos.The software company Rational brought the three modeling languages together
under one roof—thus the name Unified Modeling Language.As stated above, object
modeling is simply one part of UML.

However, it is important not to link UML and OO development too closely. In his ar-
ticle “What the UML Is—and Isn’t,” Craig Larman states:

Yet unfortunately, in the context of software engineering and the UML diagramming language,
acquiring the skills to read and write UML notation seems to sometimes be equated with skill
in object-oriented analysis and design. Of course, this is not so, and the latter is much more
important than the former. Therefore, I recommend seeking education and educational materi-
als in which intellectual skill in object-oriented analysis and design is paramount rather than
UML notation or the use of a case tool.

Although UML is very important, it is much more important to learn the OO skills first.
Learning UML before learning OO concepts is similar to learning how to read an elec-
trical diagram without first knowing anything about electricity.

The Structure of a Class Diagram
A class diagram is constructed of three different parts: the class name, the attributes, and
the methods (constructors are considered methods).The class diagram is essentially a
rectangle that separates these three parts with horizontal lines.This book often uses a
cabbie metaphor as an illustration. Figure 10.1 shows the UML class diagram represent-
ing this class.

195The Structure of a Class Diagram

This UML diagram corresponds exactly to the following Java code:

/*

This class defines a cabbie and assigns a cab

*/

public class Cabbie {

// Place the name of the company here

private static String companyName = “Blue Cab Company”;

// Name of the cabbie

private String name;

// Car assigned to cabbie

// Default constructor for the cabbie

public Cabbie() {

name = null;

myCab = null;

}

// Initializing the constructor for the cabbie

public Cabbie(String iName, String serialNumber) {

Name = iName;

myCab = new Cab(serialNumber);

}

// Set the name of the cabbie

public void setName(String iName) {

name = iName;

}

// Get the name of the cabbie

public String getName() {

return name;

}

// Give the cabbie directions

public void giveDirections(){

}

// Cabbie turns right

private void turnRight(){

}

// Cabbie turns left

private void turnLeft() {

}

// Get the name of the company

public static String getCompanyName() {

return companyName;

}

}

Take a moment to look at the code and compare it to the UML class diagram. Notice
how the class name, attributes, and methods in the code relate to the designation in the
class diagram. Really, that is all there is to the class diagram as far as the structure goes.
However, there is a lot more information to be gleaned from the diagram.This informa-
tion is discussed in the following sections.

Attributes and Methods
Besides presenting the structure of the class, the class diagram also presents information
about the attributes and methods.

Attributes
Normally, attributes are not thought of as having signatures; methods get all the credit.
However, an attribute has a type, and this type is represented in the class diagram. Con-
sider the two attributes that are in the Cabbie example:

-companyName:String

-name:String

Both of these attributes are defined as strings.This is represented by the name of the
attribute followed by the type (in these cases, String).There could have been attributes
that were defined as int and float as well, as in this example:

-companyNumber:float

-companyAge:int

By looking at the class diagram, you can tell the data type of the parameter.You can
also tell that the attributes are declared as private because of the minus sign (-) that pre-
cedes them.A plus sign (+) would denote that they were public, which should evoke a
gag reflex. Based on all discussion in the previous chapters, we know that all attributes
should be declared as private. Every now and then someone makes a case for the use of
public attributes, but the approach taken in this book is to always make attributes private.

196 Chapter 10 Creating Object Models with UML

197Access Designations

Methods
The same logic used with attributes works for methods. Rather than express the type, the
diagram shows the return type of the method.

If you look at the following snippet from the Cabbie example, you can see that the
name of the method is presented, along with the return type and the access modifier (for
example, public, private):

+Cabbie:

+giveDirections:void

+getCompanyName:String

As you can see here, in all three cases the access modifier is public (designated by the
plus sign). If a method were private, there would be a minus sign. Each method name is
followed by a colon that separates the method name from the return type.

It is possible to include a parameter list, in the following manner:

+getCompanyName(parameter-list):String

Commas separate the parameters in the parameter list.

+getCompanyName(parameter1, parameter2, parameter3):String

I like keeping the object models as simple as possible.Thus, I normally include only
the class name, attributes, and methods in the class diagrams.This allows us to concentrate
on the big-picture of the design and does not place focus on details. Including too much
information (like parameters) in the class diagrams makes the object-model difficult to
read.This is one of those issues that depends on your specific tastes.

Access Designations
As mentioned previously, the plus signs (+) and minus signs (-) to the left of the attributes
and methods signify whether the attributes and methods are public or private.The attrib-
ute or method is considered private if there is a minus sign.This means that no other class
can access the attribute or method; only methods in the class can inspect or change it.

If the attribute or method has a plus sign to the left, the attribute or method is public,
and any class can inspect or modify it. For example, consider the following:

-companyNumber:float

+companyAge:int

In this example, companyNumber is private, and only methods of its class can do any-
thing with it. However, companyAge is public, and thus it is fair game for any class to ac-
cess and modify it.

If no access designation is present in the code, the system considers the access to be the
default, and no plus or minus is used:

companyNumber:float

companyAge:int

In Java, the default type of access is protected. Protected access means that only
classes in the package can access the attribute or method.A Java package is a collection
of related classes that are intentionally grouped together by the developer (see http://
msdn2.microsoft.com/en-us/library/ms173121.aspx).

In .NET the access modifiers, per Microsoft’s MSDN, are as follows:
n public—The type or member can be accessed by any other code in the same as-

sembly or another assembly that references it.
n private—The type or member can only be accessed by code in the same class or

struct.
n protected—The type or member can only be accessed by code in the same class

or struct, or in a derived class.
n internal—The type or member can be accessed by any code in the same assem-

bly, but not from another assembly.

Inheritance
To understand how inheritance is represented, consider the Dog example presented in
Chapter 7,“Mastering Inheritance and Composition.” In this example, the class
GoldenRetriever inherits from the class Dog as shown in Figure 10.2.This relationship is
represented in UML by a line with an arrowhead pointing in the direction of the parent
or superclass.

The notation is straightforward, and when the line with the arrowhead is encountered, an
inheritance relationship is indicated.

198 Chapter 10 Creating Object Models with UML

Dog
barkFrequency: int
pantRate: int

bark: void
pant: void

GoldenRetriever
retrievalSpeed: int

retrieves: void

Figure 10.2 UML diagram of
the Dog hierarchy.

http://msdn2.microsoft.com/en-us/library/ms173121.aspx
http://msdn2.microsoft.com/en-us/library/ms173121.aspx

199Interfaces

Indicating Interface Inheritance
A dashed line with an arrowhead indicates an interface, which is discussed in the next
section.

Because Java is used for the examples in this book, we do not have to worry about multi-
ple inheritance.

However, several subclasses can inherit from the same superclass.Again, we can use the
Dog example from Chapter 7 (see Figure 10.3).

This example illustrates two concepts when modeling an inheritance tree. First, a super-
class can have more than one subclass. Second, the inheritance tree can extend for more
than one level.The example in Figure 10.3 shows three levels.We could add further levels
by adding specific types of retrievers, or even by adding a higher level by creating a
Canine class (see Figure 10.4).

Multiple Inheritance
If you are designing in languages such as Eiffel and C++, multiple inheritance is incorpo-
rated into the language and is in play as part of the overall design.

GoldenRetriever
retrievalSpeed: int

retrieves: void

Basenji
huntEfficiency: int

hunts: void

LhasaApso
guardEfficiency: int

guards: void

YodelingDog
yodelFrequency: int

yodels: void

BarkingDog
barkFrequency: int

bark: void

Dog
pantRate: int

pant: void

Figure 10.3 UML diagram of the expanded
Dog hierarchy.

200 Chapter 10 Creating Object Models with UML

 GoldenRetriever
retrievalSpeed: int

retrieves: void

Basenji
huntEfficiency: int

hunts: void

LhasaApso
guardEfficiency: int

guards: void

YodelingDog
yodelFrequency: int

yodels: void

BarkingDog
barkFrequency: int

bark: void

Hyena
pantRate: int

pant: void

Fox
pantRate: int

pant: void

Dog
pantRate: int

pant: void

Canine

Figure 10.4 UML diagram of the Canine hierarchy.

Interfaces
Because interfaces are a special type of inheritance, the notations are similar and can cause
some confusion. Earlier we said that a line with an arrowhead represents inheritance.An
interface is also represented by a line with an arrowhead—but the arrowhead is connected
to a dashed line.This notation indicates the relationship between inheritance and inter-
faces, but also differentiates them.Take a look at Figure 10.5, which is an abbreviated ver-
sion of an example in Chapter 8,“Frameworks and Reuse: Designing with Interfaces and
Abstract Classes.”The Dog class inherits from the class Mammal and implements the inter-
face Nameable.

+getName:String
+setName:void

interface
Nameable

type: String

+getType:String
+setType:void

Mammal

name: String

+getName: String
+setName: void

Dog

size: String

+getSize: String
+setSize: void

Head

Figure 10.5 UML diagram of an interface relationship.

201Composition

Composition
Composition indicates that a has-a relationship is being used.When inheritance is not the
proper design choice (because the is-a relationship is not appropriate), composition is nor-
mally used.

Chapter 9,“Building Objects,” discusses two different types of composition: aggregations
and associations. Composition is used when classes are built with other classes.This can
happen with aggregation when a class is actually a component of another class (as a tire is
to a car). Or it can happen with association when a class needs the services of another class
(for example, when a client needs the services of a server).

Aggregations
An aggregation is represented by a line with a diamond at the head. In the car example of
Chapter 9, to represent that a steering wheel is part of a car, you use the notation shown
in Figure 10.6.

As with the inheritance tree, there is no limit (theoretically) to the number of levels of ag-
gregation you can represent. In the example seen in Figure 10.7, there are four levels. No-
tice that the various levels can represent various aggregations. For example, although a
stereo is part of the car, the radio is part of the stereo, and the tuner is part of the radio.

Associations
Although aggregations represent parts of a whole, meaning that one class is logically built
with parts of another, associations are simply services provided between classes.

As mentioned earlier, a client/server relationship fits this model.Although it is obvious
that a client is not part of a server, and likewise a server is not part of a client, they both
depend on each other. In most cases, you can say that a server provides the client a service.

Car

SteeringWheel

Figure 10.6 UML diagram
representing composition.

202 Chapter 10 Creating Object Models with UML

Car

StereoEngine

Pistons SparkPlugs Radio

Tuner

Cassette Handle

Door

Figure 10.7 An expanded composition UML diagram.

In UML notation, a plain line represents this service, with no shape on either end (see
Figure 10.8).

Note that because there is no shape on either end of the line, there is no indication
about which way the service flows.The figure shows only that there is an association be-
tween the two classes.

To illustrate, consider the example of the computer system from Chapter 9. In this case,
there are multiple components, such as a computer, monitor, scanner, keyboard, and
mouse. Each is a totally separate component that interacts, to some degree, with the com-
puter itself (see Figure 10.9).

The important thing to note here is that the monitor is technically part of the com-
puter. If you were to create a class for a computer system, you could model it by using
aggregation. However, the computer represents some form of aggregation, as it is made
up of a motherboard, RAM, and so on (see Figure 10.10).

203Composition

Client

Server

Figure 10.8 UML diagram representing an association.

Computer

Monitor Scanner

Keyboard

Mouse Printer

Figure 10.9 An expanded UML diagram representing association.

Computer

Motherboard RAM

Figure 10.10 UML representation of aggregation.

204 Chapter 10 Creating Object Models with UML

Cardinality
The last issue to visit in this chapter is cardinality. Basically, cardinality pertains to the
range of objects that correspond to the class. Using the earlier computer example, we can
say that a computer is made up of one, and only one, motherboard.This cardinality is rep-
resented as 1.There is no way that a computer can be without a motherboard and, in PCs
today, no computer has more than one. On the other hand, a computer must have at least
one RAM chip, but it may have as many chips as the machine can hold.Thus, we can rep-
resent the cardinality as 1...n, where n represents an unlimited value—at least in the gen-
eral sense.

Limited Cardinality Values
If we know that there are slots for six RAM chips, the upper limit number is not unlimited.
Thus, the n would be replaced by a 6, and the cardinality would be 1...6.

Consider the example shown in Figure 9.7 from Chapter 9. In this example, we have sev-
eral different representations of cardinality. First, the Employee class has an association with
the Spouse class. Based on conventional rules, an employee can have either no spouses or
one spouse (at least in our culture, an employee cannot have more than one spouse).Thus,
the cardinality of this association is represented as 0...1.

The association between the Employee class and the Child class is somewhat different
in that an employee has no theoretical limits to the number of children that the employee
can have.Although it is true that an employee might have no children, if the employee
does have children, there is no upper limit to the number of children that the employee
might have.Thus, the cardinality of this association is represented as 0...n, and n means that
there is no upper limit to the number of children that the system can handle.

The relationship between the Employee class and the Division class states that each
employee can be associated with one, and only one, division.A simple 1 represents this as-
sociation.The placement of the cardinality indicator is tricky, but it’s a very important part
of the object model.

More Design Issues
In certain situations, it is possible for an employee to be associated with more than one divi-
sion. For example, a college might allow an individual to hold concurrent positions in the
mathematics department as well as the computer science department. This is another de-
sign issue you must consider.

The last cardinality association we will discuss is the association between the Employee
class and the JobDescription class. In this system, it is possible for an employee to have
an unlimited number of job descriptions. However, unlike the Child class, where there
can be zero children, in this system there must be at least one job description per em-
ployee.Thus, the cardinality of this association is represented as 1...n.The association in-
volves at least one job description per employee, but possibly more (in this case, an
unlimited number).

205Composition

Keeping History
You must also consider that an employee can have job descriptions for past jobs, as well as
for current jobs. In this case, there needs to be a way to differentiate current job descrip-
tions from past ones. This could be implemented using inheritance by creating a collection
of job objects with an attribute indicating which job is currently active.

Conclusion
This chapter gives a very brief overview of the UML notation used in this book.As stated
in the introduction, UML is a very complex and important topic, and the complete cov-
erage of UML requires a book (or several) unto itself.

UML is used to illustrate OO examples throughout this book.You do not need UML
to design OO systems, but UML is a tool that can be used to assist in the development of
OO systems.

Learning UML in detail is one of the steps that you should take after you are comfort-
able with the underlying OO concepts. However, as happens so many times, the chicken-
and-the-egg conundrum presents itself. In an effort to illustrate some of the examples in
the book, it is very useful to use UML.

It’s good to introduce a little of a modeling language (such as UML) and a little of a
programming language (such as Java) while explaining OO concepts. Of course, we could
have used C++ instead of Java, and another modeling system rather than UML. It is im-
portant to keep in mind that whatever examples you use, you should stay focused on the
OO concepts themselves.

References
Schmuller, Joseph, Sams Teach Yourself UML in 24 Hours, 3rd ed. Sams Publishing, 2006.

Indianapolis, IN.
Booch, G., I. Jacobson, and J. Rumbagh, The UML Users Guide, 2nd ed.Addison-Wesley,

2005. Boston, MA.
Lee, Richard and Tepfenhart,William. Practical Object-Oriented Development with UML and

Java. Prentice Hall, 2003. Upper Saddle River, New Jersey.
Ambler, Scott. The Elements of UML Style. Cambridge University Press, 2003. Cambridge,

United Kingdom.
Flower, Martin. UML Distilled, 3rd ed.Addison-Wesley Longman, 2003. Boston, MA.
Larman, Craig.“What the UML Is—and Isn’t.” Java Report, 4(5): 20–24, May 1999.

This page intentionally left blank

11
Objects and Portable Data: XML

Object-oriented technologies have made major inroads in recent years. Objects have
become a major technology in the application development industry. Objects have also
made major headway in the definition and movement of data as well. Much excitement
has been generated over the past several years regarding the portability of code. Much of
Java’s success was due to the fact that it was highly portable across multiple platforms.The
bytecodes produced by Java could be executed on various platforms, as long as the system
had a Java virtual machine loaded.The .NET framework provides another, very impor-
tant, type of portability—portability across various languages.The assemblies produced by
C# .NET can be used within Visual Basic .NET applications, or any other .NET lan-
guage for that matter. Perhaps in the future there will be a programming language that
will be fully and economically portable across both languages and platforms.

Although portable languages are powerful tools, they are really only half of the appli-
cation development equation.The programs that are written using these languages must
process data, and this data must be turned into information. It is this information that
drives businesses. Information is the other half of the portability equation.

XML is a standard mechanism for defining and transporting data between potentially
disparate systems. By using object-oriented languages such as Java,VB, and C# in con-
junction with an object-oriented data definition language such as XML, moving data be-
tween various destinations is much more efficient and secure. XML provides a
mechanism for independent applications to share data.

Portable Data
Historically, a major business problem has been the diversity of data storage formats. For
example, assume that Alpha Company uses an Oracle database system to operate its sales
system.Assume further that Beta Company uses a SQL Server database system to operate
its purchasing system. Now consider the problem that occurs when Alpha Company and
Beta Company want to do business over the Internet.Although there are obviously sev-
eral issues that must be addressed when building a system, the one problem we address
here is the fact that the two databases are not directly compatible. Our goal is to create an

208 Chapter 11 Objects and Portable Data: XML

Enterprise

Transportation

Manufacturing

Materials

13131313

13131313

Government

Insurance

Banking

Distribution

Management

Accounting

Production

Engineering

Quality

Figure 11.1 XML across industries.

electronic purchase order for Beta Company using SQL Server, which will interact di-
rectly with Alpha Company’s sales system, which uses Oracle.

Furthermore, many companies must move the information within their organization,
as well as to other companies. Much electronic commerce is transacted over both the In-
ternet and local intranets.The types of business systems that require electronic commerce
are obviously quite varied.

XML provides standards to move data in a variety of ways. Often we can think of data
as moving vertically and horizontally.The term vertical means that data is meant to move
through multiple industry groups. Industry groups such as those in accounting and fi-
nance (FpML, Financial products Markup Language) have developed their own markup
languages that provide standard data definitions.These vertical applications provide the
specific business models and terminology to move information across multiple industries.
These standards are often called a vocabulary.Thus, industry groups are using XML to
form a vocabulary.

The other approach to XML standards is that of horizontal applications. Horizontal ap-
plications are specific to a particular industry, such as retail or transportation. In all elec-
tronic commerce applications, the sharing of data is paramount. Figure 11.1 represents
how data can move vertically and horizontally through various industries.

One interesting example of an industry XML application is that of the RecipeML
(Recipe Markup Language). RecipeML is an XML vocabulary that defines standards for
industries involved with food, such as hotels, restaurants, publishers, and so on. Using
RecipeML allows these industries to move data back and forth in a standard and portable
manner. Some of the industries with XML-based standards include legal, hospitality, ac-
counting, retail, travel, finance, and education.

Here is where we consider the concept of portable data.Although the low-level data
(at the machine level) is certainly not portable, we want to create a higher-level portabil-

209XML Versus HTML

ity at the information level.Whereas Java,VB, and C# provide certain levels of portability
at the programming language level, XML provides this information portability that we are
looking for.

The Extensible Markup Language (XML)
XML stands for Extensible Markup Language.You probably are already familiar with an-
other markup language called HTML (Hypertext Markup Language). Both XML and
HTML are descendants of SGML, the Standard Generalized Markup Language. Surpris-
ingly, SGML appeared as early as the 1970s and was standardized in the 1980s.

The primary function of HTML is to present data in a browser. It was actually devel-
oped to organize data using hyperlinks, and the browser is a perfect vehicle for this pur-
pose. However, HTML is meant to format and present data, not to define and verify it.
HTML is a subset of SGML but did not include the data verification constructs provided
by the SGML specification.The reason for this is that SGML is very complex and sophis-
ticated, and implementing SGML completely can be quite expensive.At least early on,
HTML did not concern itself with the data verification issues, among other things.

XML, on the other hand, does concern itself with data verification issues. XML was
defined in 1997 as a subset of SGML. XML is much more strict with its format than
HTML and was designed to represent data. XML is not proprietary and the World Wide
Web Consortium (W3C) is the organization that proposes recommendations and that
promotes the distribution of its standards.

In subsequent chapters, we will see how XML is used within various object-oriented
technologies such as distributed computing, object persistence, and so on.

One of the philosophical problems with Java is that it is proprietary (owned by Sun
Microsystems).The .NET framework is also proprietary (owned by Microsoft).The
beauty of XML is that it is an open technology. In fact, it is one of the few technologies
that have been embraced by most of the IT industry leaders: Sun, Microsoft, IBM, and so
on.Thus, XML is not about to go away anytime soon.

XML Versus HTML
Soon after XML emerged, there was speculation that XML would replace HTML. Many
believed that because they were both descendants of SGML, XML was an upgrade. In re-
ality, HTML and XML are designed for different purposes. HTML presents data, and
XML describes the data. Both HTML and XML are important tools in the development
of Web-based systems.

XML actually looks a lot like HTML.This is not surprising, because they come from
the same source. However, XML provides two primary advantages that HTML does
not—validity and well-formed documents.

HTML tags are all predefined.Tags such as <HTML>, <HEAD>, <BODY>, and so on are all
defined in the HTML specification.You cannot add your own tags. Because HTML is in-
tended for formatting purposes, this is not really a problem. XML, however, is meant to

210 Chapter 11 Objects and Portable Data: XML

define data.To define data, you need to create your own tag names.This is where a docu-
ment called the Document Type Definition (DTD) comes into play.The DTD is where you
define the tags that describe your data.When you create an XML document, you can
only use tags that are predefined.All XML documents are checked for validity.The XML
processor reads the DTD and determines whether the document is valid. If the document
is not valid, a syntax error is produced.

Valid Documents
You are not required to use a DTD. However, using a DTD provides a great benefit to validat-
ing XML documents. XML only checks to see whether there is a well-formed document. You
need to explicitly include a DTD to check for document validity. You define the parameters in
the DTD.

For example, if you are creating a purchase order system, you might want to create a tag
called <PurchaseOrder> in the DTD. If you then misspell the tag like this:
<PurchasOrder>, this problem will be detected, and the document will be flagged as invalid.

A validated document makes XML documents much more robust—a necessity when
dealing with data. For example, HTML has many tags that are part of a pair, such as
 and . If you were to forget to close the pair with the tag, the
browser will still load the document, but the results could be unpredictable. HTML will
make a best guess and continue. XML, when used with a DTD, will not attempt a best
guess. If the document is not constructed properly, an error will be generated and the
document will not be valid.

Enforcing the validity of a document and ensuring that a document is well-formed
provides industries with an important mechanism to share information.

XML and Object-Oriented Languages
XML works hand-in-hand with object-oriented languages to provide what I have termed
“portable information.” Often, an application written in a language such as Java,VB, or
C# is developed to interact with XML. For example, let’s revisit the example earlier in the
chapter.Alpha Company, a department store, uses an Oracle database, and Beta Company,
a vacuum machine manufacturer, uses a SQL Server database.Alpha Company wants to
purchase some vacuum cleaners from Beta Company for its inventory.All transactions will
be handled electronically over the Internet.

To make a long story short, the problem is that the data is stored in two totally differ-
ent databases. Even if the databases were the same, the formats of the records in the data-
base would most likely be designed differently.Thus, the goal is to share data between
Alpha Co. and Beta Co., which means sharing the data between their databases.And this
does not mean a direct physical connection between the databases; the issue here is how
to transact business—for example, one company sending a purchase order and the receiv-
ing company processing it.

211Sharing Data Between Two Companies

Proprietary Solutions
We could of course create a proprietary application for connectivity between the Alpha and
Beta Companies. Although this would work for this one application, it is preferable to have a
more general solution (as is the object-oriented way). For example, Alpha Company might be
in the market position to require that all suppliers conform to its purchase order specifica-
tion. This is where XML shines. Alpha Company can create an XML specification to which all
its suppliers can connect.

To accomplish the goal of connecting the systems of the two companies,Alpha Com-
pany can come up with an XML specification describing what information is required to
complete a transaction and store the information in its database. Here is where the object-
oriented languages come in.A language such as Java,VB, or C# can be used to extract the
data from Alpha Company’s SQL Server database and create an XML document based on
the agreed-upon standards.

This XML document can then be sent over the Internet to Beta Company, which uses
the agreed-upon XML standard to extract the information in the XML document and
enters it into its Oracle database. Figure 11.2 represents the flow of data from one database
to another. In this figure, data is extracted from a SQL database by an applications\parser
and then sent over a network to another application\parser.This parser then converts the
data into an Oracle format.

Parsers
A parser is a program that reads a document and extracts specific information. For example,
a compiler contains a parser. The parser reads each line of a program and uses specific
grammar rules to determine how to produce code. A parser would verify that a print state-
ment was written with the appropriate syntax.

Sharing Data Between Two Companies
At this point, it is helpful to implement, to a certain extent, our example of the collabo-
ration between the Alpha and Beta Companies.The scope of this discussion is to create
the XML document that will contain a simple transaction between the two companies.
For this example, we will create a simple document that contains the information con-
tained in Table 11.1.This table defines the data that will be transferred from one com-
pany to the other.

SQLServer Parser XML Parser Oracle

Figure 11.2 Application-to-application data transfer.

212 Chapter 11 Objects and Portable Data: XML

Validating the Document with the Document Type
Definition (DTD)
In this example, we will be sending an XML document from Beta Company to Alpha Com-
pany.The XML document will represent a transaction that contains the name of the com-
pany, the address of the company, and certain product information. Note that the information
is nested.This is to say that the overall document, which can be described as an object, is that
of a supplier And nested within the supplier identification are the company name, the com-
pany address, and the product information. Note that there is also information nested within
the address and the product identifications. Before going any further, let’s define a DTD that
will drive all the transactions for this example.The DTD is presented in Listing 11.1.

Listing 11.1 The Data Definition Document for Validation

<!— DTD for supplier document —>

<!ELEMENT supplier (name, address)>

<!ELEMENT name (companyname)>

<!ELEMENT companyname (#PCDATA)>

<!ELEMENT address (street+, city, state, zip)>

<!ELEMENT street (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT state (#PCDATA)>

<!ELEMENT zip (#PCDATA)>

The DTD defines how the XML document is constructed. It is composed of tags that
look very similar to HTML tags.The first line is an XML comment.

<!— DTD for supplier document —>

Table 11.1 Specification for Data to be Transferred

Object Category Field

supplier

name

<companyname>

address

<street>

<city>

<state>

<zip>

product

type

price

count

213Integrating the DTD into the XML Document

XML comments provide the same function as any other programming language’s
comments—to document the code.As with any code, XML uses comments to make the
document easier to read and understand. Do not put too many comments in it, or the
document will be more difficult to read.This document contains only one comment.

The remaining lines actually define the structure of the XML document. Let’s look at
the first line:

<!ELEMENT supplier (name, address, product)>

This tag defines an element called supplier.As specified in the DTD above, a
supplier contains a name, an address, and a product.Thus, when an XML parser actu-
ally parses an XML document, the document must be a supplier, which contains a name,
an address, and a product.

Taking things to the next level, we see that the element name is made up of yet an-
other element called <companyname>.

<!ELEMENT name (companyname)>

The <companyname> element is then defined to be a data element designated by
#PCDATA.

<!ELEMENT companyname (#PCDATA)>

This tag terminates the hierarchy of the element tree.This DTD is named
supplier.dtd.You can use any text editor to create the DTD.There are also many inte-
grated tools and environments that can be used to create this document as well. Figure
11.3 uses Notepad to show how a DTD for this application might look.

Document Validity
An XML document that specifies a DTD is either valid or invalid based on the DTD. If a docu-
ment does not specify a DTD, the XML document is not judged either valid or invalid. An XML
document can specify a DTD internally or externally. Because external DTDs provide a very
powerful mechanism, we will use an external DTD here.

PCDATA

PCDATA stands for Parsed Character Data and is simply standard character information
parsed from the text file. Any numbers, such as integers, will need to be converted by the
parser.

Integrating the DTD into the XML Document
Now that we have created the DTD, it is time to create an actual XML document. Re-
member that the XML document must conform to the supplier DTD we have just written.

In Table 11.2, we have identified some of the actual information that will be contained
in the XML document.Again, note that the data is only contained in the end elements,
not the aggregate elements, such as address and name.

214 Chapter 11 Objects and Portable Data: XML

Figure 11.3 Creating the DTD in Notepad.

To enter this information into an XML document, we can use a text editor, just as we
used for the DTD. However, as we will see later, there are tools that have been created
specifically for this purpose. Figure 11.4 shows the XML document written using
Notepad.This document is called beta.xml.

Table 11.2 Adding the Values to the Table

Object Category Field Value

supplier name <companyname>

The Beta Company

address

<street> 12000 Ontario St

<city> Cleveland

<state> OH

<zip> 24388

product

type Vacuum Cleaner

price 50.00

count 20

215Integrating the DTD into the XML Document

Note that the second line ties this document to the supplier DTD that we defined earlier.

<!DOCTYPE supplier SYSTEM “supplier.dtd”>

Looking at Figure 11.4, we can see that the tag structure mimics the specification. It is
important to realize that the tags are nested and that only the end tags contain any data.
Some of the tags are basically high-level tags. In some ways it is similar to the concept of
abstract classes.You can think of the <address> tag as being “abstract” because we don’t
really define it. However, the <street> tag can be considered “concrete” given that we
actually assign a value to it. In other words, the <street> tag does contain information,
whereas the address tag does not:

<address>

<street>12000 Ontario St</street>

There is a better way to inspect the XML document.As stated previously, there are
many tools that have been written to assist in the development of XML documents. One
of these early tools is called XML Notepad, and it has a similar look and feel to Notepad,
provided in the Microsoft operating systems.

Figure 11.4 The Beta Company XML document with
the DTD.

216 Chapter 11 Objects and Portable Data: XML

XML Notepad
Microsoft does not provide XML Notepad at this time. You can still find XML Notepad by do-
ing a simple Internet search for “XML Notepad.” You can download Microsoft’s XML Validator
at http://www.microsoft.com/downloads/details.aspx?FamilyID=d23c1d2c-1571-4d61-
bda8-adf9f6849df9&displaylang=en.

XML Notepad can help us understand the structure of an XML document.After you in-
stall XML Notepad, you can open the beta.xml file. Figure 11.5 shows what happens
when you open the beta.xml file with XML Notepad.When the document opens, ex-
pand all of the plus signs to look at all the elements.

XML Notepad lists each level of the document, starting with the supplier tag. Note that as
we have said before, only the end elements contain any information.

The obvious advantage to developing the DTD is that it can be used for more than
one document —in this case, for more than one supplier. Let’s say we have a company
that makes skates called Gamma Company, which wants to supply Alpha Company.What
Gamma Company needs to do is create an XML document that conforms to the supplier
DTD. Opening up this document with XML Notepad presents the picture seen in
Figure 11.6.

Figure 11.5 Opening the beta.xml file with XML
Notepad.

http://www.microsoft.com/downloads/details.aspx?FamilyID=d23c1d2c-1571-4d61-bda8-adf9f6849df9&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=d23c1d2c-1571-4d61-bda8-adf9f6849df9&displaylang=en

217Integrating the DTD into the XML Document

Note that beta.xml and gamma.xml conform to the supplier DTD.The question is, what
happens when the XML document does not conform to the DTD? It is at this point
where we see the power of the DTD. Let’s purposely create an error in the gamma.xml
file by taking out all the information pertaining to the name.

<name>

<companyname>The Gamma Company</companyname>

</name>

Basically, we are creating an invalid document—invalid per the supplier DTD.The in-
valid document is found in Figure 11.7. Be aware that Notepad will not indicate that the
document is invalid because Notepad does not check for validity.You need to use an
XML validator to check for validity.

We now have an invalid document based on the supplier DTD. How do we verify that
it is invalid? We can open the invalid gamma.xml document with XML Notepad. Notice
the result, as indicated in Figure 11.8. Here XML Notepad provides a dialog box indicat-
ing that an invalid document was detected.

Because the supplier DTD was expecting a document to conform to its definition, an
error was generated. In fact, the error message is quite specific as to what the problem is.
The DTD was expecting the name information.Thus, to create a proper XML document
for this system, all the appropriate information must be supplied and supplied in the
proper format.The <address> tag must be provided for the document to be valid.

Figure 11.6 Opening the gamma.xml file with XML
Notepad.

218 Chapter 11 Objects and Portable Data: XML

Figure 11.7 An invalid document (no name information).

Figure 11.8 The invalid document error in XML
Notepad.

219Integrating the DTD into the XML Document

One of the primary points to recognize here is that this error checking would not have
happened in HTML. In fact, you can open up the XML file with a browser, as seen in
Figure 11.9.

Now let’s see what happens when we open up the invalid gamma.xml document with a
browser. Figure 11.10 shows the gamma.xml file when it’s opened in Internet Explorer.

Note that even though the document is invalid, the browser opens it and even displays
it.This is because the browser is not checking to make sure the document conforms to
the DTD, whereas XML Notepad does perform this check. In theory, this is one of the
major advantages that XML provides when working with data.Although HTML is used
to display the data, XML is used to format the data.This is a very important distinction.

You might ask, what benefit does a tool like XML Notepad provide in the overall sup-
plier example, and what is it used for? To answer the first part of the question, XML
Notepad, or some editor like it, allows us to verify that the document is valid early on in
the process.To answer the second part of the question, XML Notepad or a similar editor
can be used to actually construct the document.

Figure 11.9 The beta.xml document opened in
Internet Explorer.

220 Chapter 11 Objects and Portable Data: XML

Figure 11.10 The invalid gamma.xml document
opened in Internet Explorer.

Using Cascading Style Sheets
From a technical perspective, the concept of portable data often focuses on the movement
of data between two points. However, getting the data from point A to point B provides
no real value unless the data is presented in an appropriate way.Thus, we must consider
how the data transported in an XML system is presented to a user.

Remember that although XML is primarily used to define data, HTML is basically a
presentation mechanism. However, XML and HTML can be used in tandem to present
data via a browser.

Although XML is not generally used for presentation purposes, there are ways to for-
mat XML. One of these is to use cascading style sheets (CSS). CSS are used heavily in the
HTML world to format content.To a certain degree, CSS can be used to format XML.
Recall that the supplier XML document contains definitions for <companyname>,
<street>, <city>, <state>, and <zip>. Suppose that we want to format each of these
definitions, as seen in Table 11.3, to provide a specification that formats the elements of
the XML document.

221Using Cascading Style Sheets

We can represent this in a CSS with the following style sheet.

companyname{font-family:Arial, sans-serif;

font-size:24;

color:blue;

display:block;}

street {font-family:”Times New Roman”, serif;

font-size:12;

color:red;

display:block;}

city {font-family:”Courier New”, serif;

font-size:18;

color:black;

display:block;}

state {font-family:”Tahoma”; serif;

font-size:16;

color:gray;

display:block;}

zip {font-family:”Arial Black”, sans-serif;

font-size:6;

color:green;

display:block;}

This style sheet is implemented by adding a line of code in our XML document:

<?xml-stylesheet href=”supplier.css” type=”text/css” ?>

For example, in the case of the ZIP Code, the simple text displayed earlier is now for-
matted with a font of Arial Black, the color green, and a font size of 6.The attribute
display:block in this case will bring each attribute to a new line.

This code is inserted in the following manner:

<?xml version=”1.0” standalone=”no”?>

<?xml-stylesheet href=”supplier.css” type=”text/css” ?>

<!DOCTYPE supplier SYSTEM “supplier.dtd”>

<!— The XML data —>

<supplier>

Table 11.3 Cascading Style Sheet Specification

Tag Font Family Size Color Display

<companyname> Arial, sans serif 24 Blue Block

<street> Times New Roman, serif 12 Red Block

<city> Courier New, serif 18 Black Block

<state> Tahoma; serif 16 Gray Block

<zip> Arial Black, sans serif 6 Green Block

222 Chapter 11 Objects and Portable Data: XML

<name>

<companyname>The Beta Company</companyname>

</name>

<address>

<street>12000 Ontario St</street>

<city>Cleveland</city>

<state>OH</state>

<zip>24388</zip>

</address>

</supplier>

With the CSS in the XML document, we can now open the document with a
browser. Figure 11.11 illustrates how this looks.

Take a look at Figure 11.10 again to see how this document was presented without the
CSS.

Figure 11.11 The XML document using a cascading
style sheet.

223References

Conclusion
In this chapter, we discussed many aspects of XML and why it is a very important tech-
nology within the IT community. It is rare when many major players in the IT market
buy into the same standard, but this has happened in the case of XML.

From the object-oriented perspective, you should come away from this chapter with
the understanding that object-oriented development goes far beyond OO languages and
encompasses the data as well. Because data is the fundamental part of information sys-
tems, it is important to design object-oriented systems that focus on the data. In today’s
business environment, moving data from one point to another is of paramount impor-
tance.

There are many levels of investigation you can visit when it comes to XML.This book
is about concepts, and by the end of this chapter, you should have a good general idea of
what XML is used for, as well as some of the tools that are used.Another level that was
mentioned briefly in this chapter was that of the style-sheets. By using cascading style
sheets and other technologies, you can better format your XML documents.

References
Hughes, Cheryl. The Web Wizard’s Guide to XML.Addison-Wesley, 2003. Boston, MA.
Watt,Andrew H. Sams Teach Yourself XML in 10 Minutes. Sams Publishing, 2003.

Indianapolis, IN.
McKinnon,Al & Linda. XML:Web Warrior Series.Course Technology, 2003.Boston,MA.
Holtzer, Steven. Real World XML. New Riders, 2003. Indianapolis, IN.
Deitel, et al. XML How to Program. Prentice Hall, 2001. Upper Saddle River, New Jersey.
WC3: http://www.w3.org/XML/
W3Schools: http://www.W3Schools.com/

http://www.w3.org/XML/
http://www.W3Schools.com/

This page intentionally left blank

12
Persistent Objects: Serialization

and Relational Databases

No matter what type of business application you create, a database most likely will be
part of the equation. In fact, one of my favorite lines when it comes to software develop-
ment is “it’s all about the data.” In short, no matter what hardware, operating system, ap-
plication software, and so on is used when developing a software application, the need for
the data is usually the reason for creating the system in the first place.

Persistent Objects Basics
Recall that when an object is instantiated by an application, it lives only as long as the ap-
plication itself.Thus, if you instantiate an Employee object that contains attributes such as
name, ss#, and so on, that Employee object will cease to exist when the application termi-
nates. Figure 12.1 illustrates the traditional object life cycle that is pretty straightforward.
When an application creates an object, an object lives within the confines of that applica-
tion.When the application ends, the object goes out of scope. For the object to live on, it
must be written to some sort of persistent storage.

When the Employee object is instantiated and initialized, it has a specific state. Re-
member that the state of an object is defined by the value of it attributes. If we want to
save the state of the Employee object, we must take some sort of action to save the state of
this object.The concept of saving the state of an object so that it can be used later is
called persistence.Thus, we used the term persistent object to define an object that can be re-
stored and used independent of a single application. Figure 12.2 illustrates the traditional
object life cycle with persistence. In this figure, the object is created in application 1,
which then writes the object out to a storage device, perhaps a database. Because the ob-
ject is in persistent storage, other applications can access it. In this figure, application 2 can
now instantiate an object and load the contents of the persistent object.

226 Chapter 12 Persistent Objects: Serialization and Relational Databases

MyClassLibrary

Application gets
Object from Class Library

MyClass

Application

Object “lives” within the
scope and lifetime of

application

Figure 12.1 Object life cycle.

Application 1

(Create Object)
Write Object

Access Object
Application 2

(Load Object)

Persistent
Storage

Figure 12.2 Object life cycle
with persistence.

There are many ways to save the state of an object. Some of these are as follows:

n Save to a flat file
n Save to a relational database
n Save to an object database

The easiest way to demonstrate how to save an object is to create code that will write the
object to a flat file, as most people do not have access to an object database or an indus-
trial strength relational database on their home computer.

227Saving the Object to a Flat File

Saving the Object to a Flat File
In this section, we will use a flat file to illustrate object persistence. I define a flat file as a
simple file managed by the operating system.This is a very simple concept, so don’t get
too caught up in this description.

Flat Files
Many people do not like to use the term flat file. The word flat implies that the object is liter-
ally flattened, and in a way it is.

One of the issues you might have considered is the fact that an object cannot be saved to
a file like a simple variable—and this is true. In fact, this problem of saving the state of an
object has spawned a major segment of the software product industry, which we discuss at
length later in this chapter. Normally, when you save a number of variables to a file, you
know the order and type of each variable, and then you simply write them out to the file.
It could be a comma delimited file or any other protocol that you may decide to imple-
ment.

The problem with an object is that it is not simply a collection of primitive variables.
An object can be thought of as an indivisible unit that is composed of a number of parts.
Thus, the object must be decomposed into a unit that can be written to a flat file.After
the object is decomposed and written to a flat file, there is one major issue left to con-
sider—reconstituting the object, basically putting it back together.

Another major problem with storing objects relates to the fact that an object can con-
tain other objects. Consider that a Car object might contain objects like Engines and
Wheels.When you save the object to a flat file, you must consider saving the entire object,
Car, Engines, and the like.

Java has a built-in mechanism for object persistence. Like other C-based languages, Java
largely uses the concept of a stream to deal with I/O.To save an object to a file, Java writes
it to the file via a Stream.To write to a Stream, objects must implement either the
Serializable or Externalizable interface.

The obvious downside to this approach is that the solution is proprietary—you must
be using Java to get this to work. In fact, Java must be on both sides of the “pipe.”Another
more portable approach to this problem is to create an XML document as the intermedi-
ate file and decompose and reconstitute an object using open XML technologies.

We cover both approaches in this chapter. First, Java will be used to demonstrate the
Java serialization technology, and then we will use an XML strategy to implement an
.NET example in both Visual Basic and C#.

Serializing a File
As an example, consider the following code for a class called Person:

package Serialization;

import java.util.*;

import java.io.*;

228 Chapter 12 Persistent Objects: Serialization and Relational Databases

class Person implements Serializable{

private String name;

public Person(){

}

public Person(String n){

System.out.println(“Inside Person’s Constructor”);

name = n;

}

String getName() {

return name;

}

}

This class is a simple one that contains only a single attribute representing the name of
the person.

The one line of note here is the line that identifies the class as Serializable. If you
actually inspect the Java documentation, you will realize that the Serializable interface
really does not contain much—in fact, it is meant solely to identify that the object will be
serialized.

class Person implements Serializable{

This class also contains a method called getName that returns the name of the object.
Beside the Serializable interface, there is really nothing new about this class that we
have not seen before. Here is where the interesting stuff starts.We now want to write an
application that will write this object to a flat file.The application is called SavePerson
and is as follows:

package Serialization;

import java.util.*;

import java.io.*;

public class SavePerson implements Serializable{

public SavePerson(){

Person person = new Person(“Jack Jones”);

try{

FileOutputStream fos = new FileOutputStream(“Name.txt”);

ObjectOutputStream oos = new ObjectOutputStream(fos);

System.out.print(“Person’s Name Written: “);

229Saving the Object to a Flat File

System.out.println(person.getName());

oos.writeObject(person);

oos.flush();

oos.close();

} catch(Exception e){

e.printStackTrace();

}

}

}

Although some of this code delves into some more sophisticated Java code, we can get
a general idea of what is happening when an object gets serialized and written to a file.

Java Code
Although we have not explicitly covered some of the code in this example, such as file I/O,
you can study the code in much greater detail with a few of the books referenced at the end
of this chapter.

By now you should realize that this is an actual application. How can you tell this? The
fact that the code has a main method in it is a sure tip that this is an actual application.
This application basically does three things:

n Instantiates a Person object
n Serializes the object
n Writes the object to the file Name.txt

The actual act of serializing and writing the object is accomplished in the following code:

oos.writeObject(person);

This is obviously a lot simpler than writing each individual attribute out one at a time.
It is very convenient to simply write the object directly to the file.

Implementation and Interface Revisited
It is interesting to note that the underlying implementation of the serialization of a file is
not quite as simple as the interface used. Remember that one of the most important
themes of this book is the concept of separating the implementation from the interface.
By providing an intuitive and easy-to-use interface that hides the underlying implementa-
tion, life for the user is much easier.

Serializing a file is yet another great example of the difference between the interface
and the implementation.The programmer’s interface is to simply write the object to the

230 Chapter 12 Persistent Objects: Serialization and Relational Databases

file.You don’t care about all of the technical issues required to actually accomplish this
feat.All you care about is

n That you can write the object as an indivisible unit
n That you can restore the object exactly as you stored it

It’s just like using a car.The interface to turn on the car is your key in the ignition, which
starts it. Most people do not know or care about the technical issues regarding how things
work—all they care about is that the car starts.

The program SavePerson writes the object to the file Name.txt.The following code
restores the object.

package Serialization;

import java.io.*;

import java.util.*;

public class RestorePerson{

public RestorePerson(){

try{

FileInputStream fis = new FileInputStream(“Name.txt”);

ObjectInputStream ois = new ObjectInputStream(fis);

Person person = (Person)ois.readObject();

System.out.print(“Person’s Name Restored: “);

System.out.println(person.getName());

ois.close();

} catch(Exception e){

e.printStackTrace();

}

}

}

The main line of interest here is the code that retrieves the object from the file
Name.txt.

Person person = (Person)ois.readObject();

It is important to note that the object is reconstructed from the flat file, and a new in-
stance of a Person object is instantiated and initialized.This Person object is an exact
replica of the Person object that we stored in the SavePerson application. Figure 12.3
shows the output of both the SavePerson and the RestorePerson applications.

Note that in Figure 12.3 the name “Jack Jones,” part of the Person object, is stored in
the file Name.txt when the file is executed, and then the object is restored when
RestorePerson is executed.When the object is restored, we can access the Person
attribute.

231Using XML in the Serialization Process

Figure 12.3 Serializing an object.

What About the Methods?
One question that may cross your mind when we talk about object persistence is this:
“When the object is saved, it is easy to visualize how the attributes are saved, but what
about the methods?”

One of the definitions of an object is that it contains attributes and behaviors or, in
other words, data and methods.What happens to the methods when the object is stored?

In the case of the Java serialization example, the methods are not explicitly stored. Re-
member that we indicated that Java had to be at both ends of the “pipe.” In actuality, the
class definitions that you are using have to be on both ends of the “pipe” as well.

Thus, in the Person object example, both the SavePerson application and the
RestorePerson application must have access to the Person class.While it is possible to ac-
cess the Person class dynamically, the application that uses the class must have access to it.
Thus, the methods themselves are not necessarily kept in the data store.

That said, as far as the programmer is concerned, the attributes and behaviors are still
encapsulated as part of the object.There is no conceptual distinction—despite the fact that
the physical implementation may not match the conceptual model.

Using XML in the Serialization Process
While using a proprietary serialization technique may be efficient and compact, it is not
portable. XML is the standard for defining data, so we can create an XML model of our
serialization example that can, at least theoretically, be used across various platforms and
languages. In this section, the XML model that we create will be accessible by code writ-
ten in both C# and VB .NET. In fact, there is nothing to stop you from accessing the
generated XML file from a Java program or any other language for that matter.

The primary difference between the XML model and the Java serialization model is
that fact that with the XML model, we obviously generate an XML document.This doc-
ument represents the attributes and properties of the Person class.This approach adds a bit
of complexity to the Person class; however, the syntax provides a more encapsulated con-
struction of the class.

232 Chapter 12 Persistent Objects: Serialization and Relational Databases

Let’s first look at the C# code.The primary difference of the Person class is the way
that the attributes are defined.While much of the code is similar to the non-XML model
(like the constructors, behaviors, etc), the data is defined with XML in mind.

For example, you would embed the definitions of the XML roots, attributes, and ele-
ments directly in the code.The definitions would appear as follows:

[XmlRoot(“person”)]

public class Person

...

[XmlAttribute(“name”)]

public String Name

...

[XmlElement(“age”)]

public int Age

The interesting addition to this strategy is the fact that the attributes themselves have
specific properties.While this may add more lines of code, and thus some complexity, the
benefit is that the encapsulation of the class is much tighter. For example, throughout this
book we often proclaim the benefits of private attributes and how access to these attrib-
utes should be through defined getters and setters.While this is obviously a strong and im-
portant concept, the fact remains that the definition (and thus signature) of the getters and
setters are left to the discretion of the programmer. In short, getters and setters may be de-
fined with whatever method names the programmer conjures up. In this XML model, the
getters and setters are actually properties of the attribute and are thus bound to that attribute
in a standard manner.

For example, when creating an XML attribute called Name, the definition looks like
this:

[XmlAttribute(“name”)]

public String Name

{

get

{

return this.strName;

}

set

{

if (value == null) return;

this.strName = value;

}

}

Inspecting this code, we can see that there is a lot more code that a simple attribute
declaration:

public String Name;

233Using XML in the Serialization Process

However, although we have still defined the attribute as a type of String, the major
addition here is that the Name attribute is now defined as an XML attribute, and the corre-
sponding getter and setter are properties of the Name attribute itself.

The data validation and verification is still performed in the same way; however, it is
much more intuitive (at least once you figure it out).

The syntax to set the Name attribute now becomes a simple assignment statement like
the line of code here:

this.Name = name;

When this line is executed, the set property of the attribute is invoked. It is essentially
an operator overload (for those of us who programmed a lot in C and C++).When the
assignment operator (equals sign) is seen in the context of the Name attribute (on the left-
hand side), the getter is called. It is almost like an in-line compiler directive.

The concept of using the XML version of the Person class is very similar to the Java
serialization model. Here is some sample code.

public void Serialize()

{

Person[] myPeople = new Person[3];

myPeople[0] = new Person(“John Q. Public”, 32, 95);

myPeople[1] = new Person(“Jacob M. Smith”, 35, 67);

myPeople[2] = new Person(“Joe L. Jones”, 65, 77);

XmlSerializer mySerializer = new XmlSerializer(typeof(Person[]));

TextWriter myWriter = new StreamWriter(“person.xml”);

mySerializer.Serialize(myWriter, myPeople);

myWriter.Close();

}

The primary difference here is that, instead of being serialized to a proprietary Java for-
mat, the file produced is in XML.

<?xml version=”1.0” encoding=”utf-8”?>

<ArrayOfPerson xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<Person name=”John Q. Public”>

<age>32</age>

</Person>

<Person name=”Jacob M. Smith”>

<age>35</age>

</Person>

<Person name=”Joe L. Jones”>

<age>65</age>

</Person>

</ArrayOfPerson>

To restore the object, we use the following code:

234 Chapter 12 Persistent Objects: Serialization and Relational Databases

public void DeSerialize()

{

Person[] myRestoredPeople;

XmlSerializer mySerializer = new XmlSerializer(typeof(Person[]));

TextReader myReader = new StreamReader(“person.xml”);

myRestoredPeople = (Person[])mySerializer.Deserialize(myReader);

Console.WriteLine(“My People restored:”);

foreach (Person listPerson in myRestoredPeople)

{

Console WriteLine(listPerson.Name + “ is “ +
listPerson.Age + “ years old.”);

}

Console.WriteLine(“Press any key to continue...”);

Console.ReadKey();

}

Note that we iterate through a data structure using a foreach loop.The complete code
for this C# example and the corresponding VB .NET code is listed at the end of this
chapter.

As we have noted, one of the major advantages of this approach is that the XML file is
accessible by any and all languages and platforms that implement the XML interface, in-
cluding Java.Although we implemented the Java example in a proprietary way, this was
done for example purposes.There is nothing stopping a programmer from using the XML
approach in Java as well.

Writing to a Relational Database
The relational database is perhaps one of the most important tools ever devised in the in-
formation technology field.Although some people might not buy into this statement
completely, and there certainly are many other important candidates, the relational data-
base has had a huge impact on the IT industry. In fact, the relational database remains a
powerhouse despite the fact that other technologies may well be technologically better.

The reason for this is that relational databases are the database of choice for most busi-
nesses today. From Oracle to SQLServer in the large applications, to Microsoft Access in
small to medium applications, relational databases are everywhere.

Although relational databases are a wonderful technology, they provide a bit of a prob-
lem when it comes to interfacing with objects. Just as with the issue of writing to a flat
file, taking an object that may be composed of other objects and writing it to relational
databases, which are not designed in an object-oriented manner, can be problematic.

Relational databases are built on the concept of tables. Figure 12.4 shows a typical Mi-
crosoft Access table relationship.This relational model is so widespread that many people
intuitively think of all data models in this way. However, the object-oriented model is not
table-driven. Figure 12.4 shows the familiar Northwind relational database model that
ships with Microsoft Access.

Because objects do not map conveniently to tables, object-oriented database systems
were developed in the 1990s.An interesting bit of history is that although these databases

235Writing to a Relational Database

Figure 12.4 A relational model.

represented the object-oriented model well, and might even have performed better, there
was one major problem: legacy data.

Legacy Data
Legacy data may be decades of data that are stored in various storage devices. In this chap-
ter, we consider legacy data to be the historical data stored in relational databases. Many
people don’t like the term “legacy” because they think it implies obsolete. In fact, important
legacy data is not obsolete but an important part of the system.

Because most companies use relational databases, most of today’s business data is stored in
relational databases.This means that there is a huge investment made in these relational
databases.And there is one more issue involved when it comes to these systems—they
work. Even though object databases might perform better when writing objects to a data-
base, the cost of converting all the relational data to object data is unacceptable. In short,
to use an object database, a company would have to convert all of its data from a relational
database to an object database.This has many drawbacks.

First, anyone who has performed the conversion of data from one database to another
knows that this is a very painful process. Second, even if the data converts successfully,
there is no way to know how the change of database tools will affect the application code.
Third, when problems occur (and they almost always do), it’s difficult to determine
whether the problem is with the database or the application code. It can be a nightmare.
Most company decision makers were not willing to take these chances.Thus, object data-
bases were relegated to totally new systems written with object-oriented code.

However, we still have the following problem:We want to write object-oriented appli-
cations, but we need to access the legacy data in the relational databases.This is where ob-
ject-to-relational mapping comes in.

236 Chapter 12 Persistent Objects: Serialization and Relational Databases

Accessing a Relational Database
All databases applications have the following structure:

n Database client
n Database server
n Database

The database client is the user application that provides the interface to the system. Often
it is a GUI application that allows users to query and update the database.

SQL
SQL stands for Structured Query Language. It is a standard way for database clients to com-
municate with varied vendor database systems that implement this standard.

The database client will communicate with the database server via SQL statements. Figure
12.5 displays a general solution to the database client/server model.

As an example, let’s use Java to communicate to a Microsoft Access database, which is a re-
lational database. Java uses JDBC to communicate with database servers.

JDBC
Officially, Sun does not maintain JDBC as an acronym. In the industry it is known as Java
Database Connectivity.

Part of the problem with database drivers is that they tend to be vendor-specific.This is a
common problem with any type of driver.As you probably know, when you purchase a
new printer, the printer comes with a driver that’s specific to that printer, and you might
even have to download specific updates for that driver. Software products have similar is-
sues. Each vendor has a specific protocol for communicating with its product.This solu-
tion might work well if you continue to use a specific vendor. However, if you want to
maintain the option of changing vendors, you might be in trouble.

Microsoft has produced a standard called Open Database Connectivity (ODBC).Ac-
cording to Jamie Jaworski in Java 2 Platform Unleashed,“ODBC drivers abstract away ven-
dor-specific protocols, providing a common application-programming interface to
database clients. By writing your database clients to the ODBC API, you enable your pro-
grams to access more database servers.”Take a look at Figure 12.6.This figure illustrates
how ODBC fits into the picture.

user DB
Client

DB
server

SQL

driver

DB

Figure 12.5 Database client server model.

237Writing to a Relational Database

Again we see the words abstract and interface in a definition of a software API. By using
ODBC, we can write applications to a specific standard, and we do not need to know the
implementation.Theoretically, we can write code to the ODBC standard and not care
whether the database implementation is a Microsoft Access database or an Oracle
database—theoretically at least.

As we see in Figure 12.5, the client uses the driver to send SQL statements to the data-
base servers. Java uses JDBC to communicate with the database servers. JDBC can work in
various ways. First, some JDBC drivers can connect directly to the database servers. Others
actually use ODBC as a connection to the database servers, as in Figure 12.7. Depending
on how you decide to write your applications, you might need to download various driv-
ers and servers.These specifics are well beyond the scope of this book because here we are
concerned mainly with the general concepts. For more detailed information on how to
actually set up an actual database and how to connect to it with your applications, please
refer to more advanced books such as Java 2 Platform Unleashed—it is not a trivial en-
deavor.

The JDBC API provides the interface between the application program and the database.
These interfaces are found in the Java package called java.sql.The API includes the fol-
lowing:

ODBC

driver

driver

driver

DB
Client

Oracle

SQLserver

Access

Figure 12.6 Database client server model
using ODBC.

JDBC-
ODBC

driver

driver

driver

Java
DB Client

Figure 12.7 Database client
server model using

ODBC/JDBC.

238 Chapter 12 Persistent Objects: Serialization and Relational Databases

n DriverManager

n Connection

n Statement

n ResultSet

Let’s explore these topics one at a time in the following sections.

Loading the Driver
Running a database application is not quite as straightforward as running the serialization
example in the earlier sections of this chapter because a client/server connection must ac-
tually be created. Connecting to a local file, as was done in the serialization example, is a
fairly basic task. However, remember that when using a separate database application such
as Microsoft Access, a connection must be made to the database itself.

This connection requires that the database driver be loaded first.To load the driver, we
need to use the Driver Manager. In Java, the DriverManager class loads the driver into the
Java app, and then JDBC is used to make the connection between the app and the database.

To load the Sun driver, you code the following line:

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

Drivers for Other Databases
You can use drivers for database systems other than Access as well. You would then have to
replace the string loaded by the forName() command.

Normally the Class.forName construct is used for this purpose.You could explicitly as-
sign a reference to the driver like this:

java.sql.Driver d = Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

However, the Driver class is automatically registered within the application, so this is
not necessary.

Making the Connection
After the driver has been loaded, the connection to the database can now be loaded using
the getConnection method.

Connection con = DriverManager.getConnection(url, “id”, “pwd”);

The url string format depends on which driver you are using. For example, because
we are using the JDBC-ODBC bridge, we can use a url like ”jdbc:odbc:myDriver”.

Connection con = DriverManager.getConnection(“jdbc:odbc:myDriver”, “id”, “pwd”);

You can also connect to the datasource over the Internet with the following form:

jdbc:<sub-protocol>:<sub-name>

The actual code might look like this:

jdbc:odbc//companyserver.com:500/supplierdata

239Loading the Driver

Driver Documentation
Remember that you need to consult the documentation for the driver you are using. The syn-
tax may vary depending on the specific driver.

With the driver loaded and a connection made to the database, you are now ready to exe-
cute some SQL commands.

The SQL Statements
If you have used Microsoft Access or any other relational database, you have certainly exe-
cuted SQL statements.This section provides the basic Java syntax for building and submit-
ting a SQL query to a relational database. It is interesting to note that from now on,
everything that we do is not database-specific. Now that the driver has been loaded and
the connection made, the rest is basic SQL, which is standard across database platforms.

The first thing to do is create a statement object, which at this point does not yet con-
tain a SQL statement.You can use the createStatement method to execute simple SQL
statements that do not contain any parameters. In this case, we are simply creating a state-
ment object, which will obtain its SQL information a bit later.

Statement statement = connection .createStatement();

There are actually two types of SQL statements that we can execute:

n Queries
n Updates

We use primary statements such as the executeQuery method to execute basically any
type of SQL query that we are interested in.The executeUpdate method is used to exe-
cute something like an update or insert operation or anything that would actually change
the database.The executeQuery method only inspects the database and never physically
alters it. In short, queries would include operations like SELECT statements and updates
would include operations such as INSERT, UPDATE, DELETE, and so on.

However, before we can actually execute the query, we must build the query. Rather
than hard-code it into the executeQuery method, let’s build a string that we can pass to
the executeQuery method.This way, we can make the code much more configurable.
Here is the code to build a query string.

String sqlQuery= “SELECT PRODUCT FFROM SUPPLIERTABLE WHERE PRODUCT = ‘Bolts’”;

What we want to do here is query the SUPPLIERTABLE for any record that contains a
PRODUCT of ’Bolts’.

SQL Strings
Note that SQL uses the single quote to delineate strings. Make sure you remember this be-
cause many programming languages use double quotes to delineate strings. This can get
confusing and produce incorrect code.

240 Chapter 12 Persistent Objects: Serialization and Relational Databases

Now that we have the SQL string built, we can execute the executeQuery method as fol-
lows:

ResultSet rs = statement.executeQuery(sqlQuery);

You might be wondering what the ResultSet is.Well, remember that the SQL query
performs a search of the SUPPLIERTABLE for any record that contains a PRODUCT of
’Bolts’.This implies that there might be more than one supplier that supplies bolts.
Thus, we have the potential to need storage for more than one supplier. Many object-ori-
ented languages include the concept of a collection. Collections not only include traditional
data structures such as arrays; they also include data structures such as an ArrayList, hash
tables, and so on.

Arrays and Collections
Collections are a very useful addition to the Java and .NET toolkits. One of the disadvan-
tages of an array is that you must define its length when the array is declared.
ArrayLists, on the other hand, are basically arrays that can grow and thus make your pro-
gramming life much easier.

When a SQL query is executed, the results are held in a ResultSet object, as indicated in
the previous line of code.When the executeQuery method is invoked, all records in the
SUPPLIERTABLE that contain the string ’Bolts’ in the Product field will be returned in
the ResultSet. One of the advantages of this is that we can iterate through the
ResultSet. For example, suppose we want to iterate through the ResultSet to simply
print all the suppliers that supply bolts that were culled from the database.

if (rs.next()){

System.out.println(“rs.getString(“SUPPLIERID”));

}

In this case, when the ResultSet is returned, the pointer to the collection is at position
0 (remember that Java and .NET start counting at zero). Each time rs.next() is exe-
cuted, the pointer to the collection is incremented by one, basically pointing to the next
row. If there are no more rows available, rs.next() returns a value of false. In this way,
you can process the ResultSet in a very logical and efficient manner.

If you know the specific row ahead of time, you can actually use the following code:

if (rs.next()){

System.out.println(“rs.getString(5));

}

This might be very convenient, but it is obviously not that configurable.
Although the statement and the connection will close by default when the application

terminates, proper programming conventions dictate that you should close them yourself.
This will ensure the integrity of the database. Closing the database is just as important as
closing a file.The code for this is quite simple:

statement.close();

connection.close();

241Loading the Driver

Figure 12.8 illustrates the complete process as detailed in this part of the chapter.

The complete code for this example is as follows:

public void findVendor(String vendorId) throws SQLException{

String returnString = null;

String dbUserid = “userid”; // Your Database user id

String dbPassword = “password” ; // Your Database password

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

Connection connection =

DriverManager.getConnection(“jdbc:odbc:myDriver”, dbUserid ,dbPassword);

Statement statement = connection .createStatement();

String sqlQuery=

“select PRODUCT from SUPPLIERTABLE where PRODUCT = ‘Bolts’”;

ResultSet rs = statement.executeQuery(sqlQuery);

if (rs.next())

{

System.out.println(“rs.getString(“SUPPLIERID”));

}

statement.close();

connection.close();

}

Executing the Code
Remember that you will have to customize this code for whichever driver you are using and
the name of your database. Thus, some editing is required before this code will run.

load
driver

execute
query

get result
set

process
result set

get
connection

create
statement

build
SQL

Figure 12.8 The complete process.

242 Chapter 12 Persistent Objects: Serialization and Relational Databases

Conclusion
In this chapter, we covered the concept of object persistence. Previously, we had focused
mainly on the fundamental object-oriented concepts and treated the object as an entity
that persists only in the life cycle of the application that creates it.We considered the issue
of objects that need to persist beyond the life cycle of one or more applications.

For example, an application might need to restore an object that was created by an-
other application or might create an object for later use by itself or other applications.
One way to persist an object is to serialize it to a conventional file.Another is to use a re-
lational database.

References
Savitch,Walter. Absolute Java, 3rd ed.Addison-Wesley, 2008. Boston MA.
Walther, Stephen. ASP.NET 3.5 Unleashed. Sams Publishing, 2008. Indianapolis, IN.
Skeet, Jon. C# in Depth:What You Need to Master C# 2 and 3.Manning, 2008.Greenwich,CT.
Deitel, et al. C# For Experienced Programmers. Prentice Hall, 2003. Upper Saddle River,

New Jersey.
Deitel, et al. Visual Basic .NET For Experienced Programmers. Prentice Hall, 2003. Upper

Saddle River, New Jersey.
Jaworski, Jamie. Java 2 Platform Unleashed. Sams Publishing, 1999. Indianapolis, IN.
Flanagan, David, et al. Java Enterprise in a Nutshell. O’Reilly, 1999. Sebastopol, CA
Farley, Jim. Java Distributed Computing. O’Reilly, 1998. Sebastopol, CA
Sun Microsystems: http://java.sun.com/

Example Code Used in This Chapter
The following code is presented in C# .NET and VB .NET.These examples correspond
to the Java code that is listed inside the chapter itself.

The Person Class Example: C# .NET
// Class Person
using System;
using System.Collections;
using System.IO;
using System.Xml;
using System.Xml.Serialization;

namespace CSSerial
{

[XmlRoot(“person”)]
public class Person
{

private String strName;
private int intAge;

http://java.sun.com/

243Example Code Used in This Chapter

private int intScore;

public Person()
{

this.Name = “John Doe”;
this.Age=25;
this.Score=50;

}

public Person(String name, int age, int score)
{

this.Name = name;
this.Age = age;
this.Score = score;

}
[XmlAttribute(“name”)]
public String Name
{

get
{

return this.strName;
}
set
{

if (value == null) return;
this.strName = value;

}
}

[XmlElement(“age”)]
public int Age
{

get
{

return this.intAge;
}
set
{

this.intAge = value;
}

}

[XmlIgnore()]
public int Score
{

get
{

return intScore;
}
set
{

this.intScore = value;
}

244 Chapter 12 Persistent Objects: Serialization and Relational Databases

}
}

}

// Class CSSerial
using System;
using System.Collections;
using System.IO;
using System.Xml;
using System.Xml.Serialization;

namespace CSSerial
{

class Program
{

static void Main(string[] args)
{

Program myProgram = new Program();
}

public Program()
{

Serialize();
DeSerialize();

}

public void Serialize()
{

Person[] myPeople = new Person[3];
myPeople[0] = new Person(“John Q. Public”, 32, 95);
myPeople[1] = new Person(“Jacob M. Smith”, 35, 67);
myPeople[2] = new Person(“Joe L. Jones”, 65, 77);
XmlSerializer mySerializer = new

XmlSerializer(typeof(Person[]));
TextWriter myWriter = new StreamWriter(“person.xml”);
mySerializer.Serialize(myWriter, myPeople);
myWriter.Close();

}

public void DeSerialize()
{

Person[] myRestoredPeople;
XmlSerializer mySerializer = new

XmlSerializer(typeof(Person[]));
TextReader myReader = new StreamReader(“person.xml”);
myRestoredPeople =

(Person[])mySerializer.Deserialize(myReader);
Console.WriteLine(“My People restored:”);
foreach (Person listPerson in myRestoredPeople)
{

Console.WriteLine(listPerson.Name + “ is “ +
listPerson.Age + “ years old.”);

}

245Example Code Used in This Chapter

Console.WriteLine(“Press any key to continue...”);
Console.ReadKey();

}
}

}

The Person Class Example: VB .NET
<Serializable()> _
Public Class Person

Private strName As String

Sub New()
Me.Name = “Matt”

End Sub

Sub New(ByVal name As String)
Me.strName = name

End Sub

Public Property Name()
Get

Return strName
End Get
Set(ByVal value)

strName = value
End Set

End Property

Public Function getTime() As Date
Return Now()

End Function
End Class

Module Main

Sub Main()
Dim SerialDemo As PreservePerson = New PreservePerson()
Console.WriteLine(“Press any key to continue...”)
Console.ReadKey()

End Sub

End Module

Imports System.IO
Imports System.Xml
Imports System.Runtime.Serialization.Formatters.Binary
Imports System.Runtime.Serialization

Public Class PreservePerson
Sub New()

‘First Create the person and write it to disk

246 Chapter 12 Persistent Objects: Serialization and Relational Databases

Dim myPerson As Person = New Person(“Jack Jacobs”)
Console.WriteLine(“Name Before Serialization: “ & myPerson.Name)
serializePerson(myPerson)
myPerson = Nothing

‘Now make a new person from the saved object
Dim myRestoredPerson As Person = deserializePerson()
Console.WriteLine(“Name After Serialization: “ &

myRestoredPerson.Name)
End Sub

Public Sub serializePerson(ByVal p As Person)
Try

Dim xmlSerializer As Serialization.XmlSerializer
Dim strWriter As New StringWriter()
Dim dataFile As FileStream = New FileStream(“Sample.xml”,

➥FileMode.Create, FileAccess.Write, FileShare.None)
xmlSerializer = New

Serialization.XmlSerializer(GetType(Person))
xmlSerializer.Serialize(dataFile, p)
dataFile.Close()

Catch ex As Exception
Console.WriteLine(ex.Message & vbCrLf & ex.StackTrace)

End Try
End Sub

Public Function deserializePerson() As Person
Dim p As Person
Try

Dim dataFile As FileStream = File.Open(“Sample.xml”,
➥FileMode.Open, FileAccess.Read)

Dim xmlSerializer As New
Serialization.XmlSerializer(GetType(Person))

‘ Create the new Person object from the serialization.
p = xmlSerializer.Deserialize(dataFile)
dataFile.Close()

Catch ex As Exception
Console.WriteLine(ex.Message)
Console.WriteLine(ex.StackTrace)
p = Nothing

End Try
Return p

End Function
End Class

13
Objects and the Internet

Perhaps the major reason that objects have become so popular in the IT industry has to
do with the Internet.Although object-oriented languages have been around basically as
long as structured languages, it was only when the Internet emerged that objects gained
wide acceptance.

Actually, the object-oriented language Smalltalk became popular during the 1980s and
1990s.And the object-based language C++ gained widespread acceptance in the 1990s.
Smalltalk gained widespread support from object-oriented purists, and C++ became the
first object language to become a force in the marketplace. Java, which was targeted
specifically for networks, is an object-oriented language which has proved commercially
successful. Now, with the introduction of .NET, object-oriented languages have become
part of the mainstream.This chapter covers some of the object technologies that are used
on the Internet.

Evolution of Distributed Computing
In a basic sense, we can trace the beginning of what can be called “distributed comput-
ing” back to the advent of email. For the purposes of this book, we focus on the process
of sending objects between applications that reside on distributed physical platforms. Dis-
tributed computing includes many technologies, including the following, which are cov-
ered at varied degrees within this chapter:

n HTML
n EDI
n RPC
n CORBA
n DCOM
n XML
n SOAP
n Web Services

248 Chapter 13 Objects and the Internet

web
server

web
server

1

1

2
2

3

server-side validation client-side validation

Figure 13.1 The client-server model.

Object-Based Scripting Languages
The primary focus of this book has been on programming languages, specifically Java and
the .NET languages. However, these object-oriented languages are not the only domains
for programming with objects.We have already mentioned that C++ is not a true object-
oriented programming language but is actually an object-based programming language.
Remember that C++ is considered to be object-based. Object-oriented concepts are not
enforced.You can write a non-object-oriented C program using a C++ compiler.There
is also a class of languages called scripting languages. JavaScript,VBScript and ASP all fall
into this category.

Overall Model
Many technologies are used to create web pages. Programming languages, scripting lan-
guages, and markup languages all have a place in the model. Although this book focuses
primarily on object-oriented programming languages, it is important to understand that pro-
gramming languages are just part of the puzzle.

At this point, let’s pause briefly to cover a few of the Internet-related topics that form the
basis for our discussion on the Web. First, it is important to review the concepts of a
client-server model. Figure 13.1 shows a typical client-server model.

It is important to understand that there really are two sides to the client-server story.As
the name implies, the two parts of the model are the client side, which in many cases is
the browser, and the server side, which is the physical web server.A simple e-commerce
example serves as a good study for this discussion.

Suppose you are creating a simple web page that will request the following information
from the user:

n Date
n First name

249Object-Based Scripting Languages

Figure 13.2 Rendering an HTML document.

n Last name
n Age

When invoked, the HTML is rendered in the browser, which is considered the client, as
shown in Figure 13.2.

This is obviously a very simple HTML document; however, it illustrates the concept of
form validation quite well. One of the major issues we must address when developing a
client-server system is whether we will do client validation, server validation, or both.

For example, suppose we want to verify that the date entered by the user is valid.We
also want the age to be within a valid range—we certainly don’t want someone to enter
an age of -5.The question is whether to validate on the client side or the server side. Let’s
explore why this is an important discussion and how it relates to objects.

First, let’s address the issue of the Age field. In most business systems, the customer in-
formation would be stored in a database that resides with the server. For security reasons,
the client is not permitted to access the database directly.

Client Security
Because anyone can bring up a web browser, it would be very foolish to let the client
(browser) access the database directly. Thus, when the client needs to inspect or update the
database, it must request the operation from the server. This is a basic security issue.

250 Chapter 13 Objects and the Internet

The reason why this example is so interesting is because it’s a perfect example of the inter-
face/implementation paradigm stressed throughout this book. In this case, the client is re-
questing a service from the server.The software system provides an interface through
which the client can literally send messages and request specific services from the server.

In the example relating to the Age field in the HTML document in Figure 13.2, sup-
pose a user named Mary wants to update her age in the database.After bringing up the
web page, the user enters the appropriate information on the form (including her age in
the Age field) and then clicks on the Register button. In the simplest scenario, the infor-
mation in the form is sent to the server, which then processes the information and updates
the database.

How is the information entered in the Date field verified? If no validation is done, the
software on the server accesses the Age field in Mary’s record and makes the update. If the
age that Mary enters is incorrect, the inappropriate age is entered in the database.

If the validation is done on the server, the software on the server checks to make sure
that the Age value falls into appropriate ranges. It is also possible that the database itself
does some checking to ensure that the age is within proper limits.

However, there is one major limitation to server-side validation—the information must
be sent to the server.This might seem counter-intuitive, but you can ask this simple ques-
tion:Why validate something on the server that can be validated on the client?

There are several points that address this question:

n Sending things to the server takes more time.
n Sending things to the server increases network traffic.
n Sending things to the server takes up server resources.
n Sending things to the server increases the potential for error.

For these reasons, as well as other possible issues, our goal is to do as much of the valida-
tion on the client as possible.This is where the scripting languages come into play.

A JavaScript Validation Example
JavaScript, as are most scripting languages, is considered to be object-based. Just like C++,
you can write JavaScript applications that do not comply with object-oriented criteria.
However, JavaScript does provide object-oriented capabilities.This is what makes scripting
languages, like JavaScript and ASP .NET, very important in the object-oriented market.
You can use objects in a JavaScript application to enhance the capabilities of your web
page. In some ways, you can think of these scripting languages as bridges between tradi-
tional programming paradigms and object-oriented models. I feel it is important to un-
derstand you can incorporate objects into your web applications, even if you aren’t using
pure object-oriented technologies.

To understand the power of the scripting languages, we must first understand the limi-
tations of HTML. HTML is a markup language that provides functionality, not inherent
programming capabilities. For example, there is no way in HTML to program an IF state-

251A JavaScript Validation Example

ment or a loop.Thus, in the early days of HTML, there was little if any way to validate
data on the client side. Scripting changed all of this.

With the functionality provided by JavaScript and other scripting languages, a web
page developer could actually perform programming logic within the web page.The ca-
pability to perform programming logic allows for client-side validation. Let’s look at an
example of a very simple validation application using HTML and JavaScript.The code for
this simple web page is presented as follows:

<html>

<head>

<title>Validation Program</title>

<script type = “text/javascript”>

function validateNumber(tForm) {

if (tForm.result.value != 5) {

this.alert (“not 5!”);

} else {

this.alert (“Correct. Good Job!”);

}

}

</script>

</head>

<body>

<hr>

<p>

<h1>Validate</h1>

<form name=”form”>

<input type=”text” name=”result” value=”0” SIZE=”2”>

<input type=”button” value=”Validate” name=”calcButton”

onClick=”validateNumber(this.form)”>

</form>

<hr>

</body>

</html>

One of the first things to notice is that the JavaScript is embedded inside the HTML
code.This is different from how a programming language is used.Whereas languages like
Java and C# exist as independent application entities, JavaScript code can only exist
within the confines of a browser.

Java Versus JavaScript
Although Java and JavaScript are both based on C syntax, they are not really related.

When presented in the client browser, the web page is very straightforward, as shown in
Figure 13.3.

In this application, a user can enter a number in the textbox and then click the Validate
button.The application will then check to see whether the value is 5. If the entered value

252 Chapter 13 Objects and the Internet

Figure 13.3 JavaScript validation application client.

is not 5, an alert box will appear to indicate that there was a validation error, as seen in
Figure 13.4. If the user enters 5, an alert box indicates that the value was as expected.

The mechanism for performing this validation is based on two separate parts of the
JavaScript script:

n The function definitions
n The HTML tags

As with regular programming languages, we can define functions in JavaScript. In this
example, we have a single function in the application called validateNumber().

<script type = “text/javascript”>

function validateNumber(tForm) {

if (tForm.result.value != 5) {

this.alert (“not 5!”);

} else {

this.alert (“Correct. Good Job!”);

}

}

</script>

JavaScript Syntax
Because we are more concerned with the concepts in this book, please refer to a JavaScript
book for the specifics of the JavaScript syntax.

253Objects in a Web Page

Figure 13.4 JavaScript validation alert box.

The function is actually called when the Validate button is clicked.This action is captured
in the HTML form definition.

<input type=”button” value=”Validate” name=”calcButton”

onClick=”validateNumber(this.form)”>

When the Validate button is clicked, an object that represents the actual form is sent via
the parameter list to the validateNumber() function.

Objects in a Web Page
There are many ways that you can utilize objects within an HTML file for use in a web
page. Objects can be implemented via a scripting language, as in the JavaScript valida-
tion example in the previous section. External objects can also be included within an
HTML file.

There are many examples of these external objects. Some of these objects play various
media like music and movies. Others can execute objects created by third-party software
such as PowerPoint or Flash.

In this section we take a look at how objects are embedded within a web page.

254 Chapter 13 Objects and the Internet

JavaScript Objects
Object programming is inherent to the process of the JavaScript example illustrated in the
previous section.We can see this by looking at the code within the validateNumber()
function.Although there are many names, like component, widgets, controls, and so on to
describe the parts of a user interface, they all relate to the functionality of an object.

There are several objects used to create this web page.You can consider the following
as objects:

n The text box
n The button
n The form

Each of these has properties and methods. For example, you can change a property of the
button, like the color, as well as change the label on the button.The form can be thought
of as an object made up of other objects.As you can see in the following line of code, the
notation used mimics the notation used in object-oriented languages (using the period to
separate the object from the properties and methods). In the line of code, you can see that
the value property of the text box object (result) is part of the form object (tForm).

if (tForm.result.value != 5)

Additionally, the alert box itself is an object.We can check this by using a this pointer
in the code.

this.alert (“Correct. Good Job!”);

The this Pointer
Remember the this pointer refers to the current object, which in this case is the form.

JavaScript supports a specific object hierarchy. Figure 13.5 provides a partial list of this hi-
erarchy.

As with other scripting languages, JavaScript provides a number of built-in objects.As
an example, we can take a look at the built-in Date class.An instance of this class is an ob-
ject that contains methods such as getHours() and getMinutes().You can also create
your own customized classes.The following code demonstrates the use of the Date object.

<html>

<head>

<title>Date Object Example</title>

</head>

<body>

<script language=”JavaScript” type = “text/javascript”>

days = new Array (“Sunday”, “Monday”, “Tuesday”,

“Wednesday”, “Thursday”, “Friday”,

“Saturday”, “Sunday”);

255Objects in a Web Page

window

document

link

anchor

form

frame

navigator

history

location

form elements

Figure 13.5 JavaScript object tree.

today=new Date

document.write(“Today is “ + days[today.getDay()]);

</script>

</body>

</head>

</html>

Note that in this example, we actually create an Array object that holds the string val-
ues representing the days of the week.We also create an object called today that holds the
information pertaining to the current date.This web page will display the current day of
the week based on the date in your computer’s memory.

Web Page Controls
There are many types of objects that can be embedded directly into an HTML docu-
ment.Web page controls consist of a wide array of pre-built objects.To utilize these ob-
jects, an <object> tag is provided.As an example, we will use a Slider control to

256 Chapter 13 Objects and the Internet

Figure 13.6 Web page control.

include in a simple web page.The following HTML code shows how to use this Slider
control.

<html>

<head>

<title>Slider</title>

</head>

<body>

<object classid=”clsid:F08DF954-8592-11D1-B16A-00C0F0283628” id=”Slider1”
width=”100” height=”50”>

<param name=”BorderStyle” value=”1” />

<param name=”MousePointer” value=”0” />

<param name=”Enabled” value=”1” />

<param name=”Min” value=”0” />

<param name=”Max” value=”10” />

</object>

</body>

</html>

When this file is opened in a browser, the results are seen in Figure 13.6.

Note that this is a true object. It has attributes: height, width, and so on and behaviors: the
slider. Some of the attributes are set via the parameters passed from within the <object>
tag.

257Objects in a Web Page

Sound Players
The <object> tag can also be used to embed and launch various sound players from
within the browser. In most cases, the player launched depends on the actual default player
loaded by the browser.

For example, the following HTML code loads and plays the sound file specified within
the <object> tag. In this case, the audio file must be in the appropriate directory—
although the file can be accessed over the Internet.

<html>

<head>

<title>SoundPlayer</title>

</head>

<body>

<object

classid=”clsid:22D6F312-B0F6-11D0-94AB-0080C74C7E95”>

<param name=”FileName” value=”fanfare.wav” />

</object>

</body>

</html>

Movie Players
Movie players can be included as well, just as a sound player.The following code will play
a movie file (.wmv) from within the <object> tag.As with any sound file, the movie file
must be in the appropriate directory or Internet location.

<html>

<head>

<title>Slider</title>

</head>

<body>

<object

classid=”clsid:22D6F312-B0F6-11D0-94AB-0080C74C7E95”>

<param name=”FileName” value=”AspectRatio4x3.wmv” />

</object>

</body>

</html>

258 Chapter 13 Objects and the Internet

Flash
As our last example (although) there are many more, a Flash object can be embedded in a
web document by using the <object> tag as shown in the following HTML code.

<html>

<head>

<title>Slider</title>

</head>

<body>

<object width=”400” height=”40”

classid=”clsid:D27CDB6E-AE6D-11cf-96B8-444553540000”

codebase=”http://download.macromedia.com

/pub/shockwave/cabs/flash/swflash.cab#4,0,0,0”>

<param name=”SRC” value=”intro.swf”>

<embed src=”bookmark.swf” width=”400” height=”40”></embed>

</object>

</body>

</html>

Distributed Objects and the Enterprise
In the past several years, the term enterprise computing has become a major part of the infor-
mation technology lexicon.Today, much of the major development in the area of IT tech-
nology is that of enterprise computing. But what does enterprise computing actually mean?

Perhaps the most basic definition of enterprise computing is that it’s essentially distrib-
uted computing. Distributed computing is just what the name implies, a distributed group of
computers working together over a network. In this context, a network can be a propri-
etary network or the Internet.

The power of distributed computing is that computers can share the work. In a truly
distributed environment, you do not even need to know what computer is actually servic-
ing your request—in fact, it might be better that you don’t know. For example, when you
shop online you connect to a company’s web site.All you know is that you are connecting
using a URL. However, the company will connect you to whatever physical machine is
available.

Why is this desirable? Suppose that a company has a single machine to service all the
requests.Then consider what would happen if the machine crashes. Now let’s suppose that
the company can distribute the online activities over a dozen machines. If one of the ma-
chines goes down, the impact will not be as devastating.

Also, consider the situation when you download files from a web site.You probably
have encountered the situation in which the download site provides you with links to a
number of sites, and then asks you to choose the site closest to you.This is a means of dis-

259Distributed Objects and the Enterprise

tributing the load over the network. Computer networks can balance the load themselves.
Figure 13.7 provides a diagram of how a distributed system might look.

This book is focused on objects and object-oriented concepts. So in many ways, the enti-
ties we are interested in are called distributed objects.The fact that objects are totally self-
contained makes them perfect for distributed applications.The thrust of this chapter is
this: If your application (client) requires the service of some object, that object can reside
anywhere on the network. Let’s explore some of the technologies that exist for distributed
objects.

The Common Object Request Broker Architecture (CORBA)
One of the primary tenets of this book is that objects are totally self-contained units.With
this in mind, it doesn’t take much imagination to consider sending objects over a network.
In fact, we have used objects traveling over a network in many of the examples through-
out this book.A Java applet is a good example of an object being downloaded from a
server to a client (browser).

The entire premise of the enterprise is built on the concept of distributed objects.
There are many advantages to using distributed objects; perhaps the most interesting is the

Data
Objects

Business
Objects

Mainframes

Data
Servers

Internet

Server

Laptops
Workstations

Figure 13.7 Distributed computing.

260 Chapter 13 Objects and the Internet

fact that a system can theoretically invoke objects anywhere on the network.This is a
powerful capability, and is the backbone for much of today’s Internet-based business.An-
other major advantage is that various pieces of a system can be distributed across multiple
machines across a network.

The idea of accessing and invoking objects across a network is a powerful technique.
However, there is one obvious fly in the ointment—the reoccurring problem of portabil-
ity.Although we can, of course, create a proprietary distributed network, the fact that it is
proprietary leads to obvious limitations.The other problem is that of programming lan-
guage. Suppose a system written in Java would like to invoke an object written in C++.
In the best of all worlds, we would like to create a non-proprietary, language-independent
framework for objects in a distributed environment.This is where CORBA comes in.

OMG
An organization you should become very familiar with is the Object Management Group
(OMG). OMG is the keeper of the keys for many standard technologies, including CORBA and
UML, among others. Find out more at http://www.omg.org.

The main premise of CORBA (Common Object Request Broker Architecture) is this:
Using a standard protocol, CORBA allows programs from different vendors to communi-
cate with each other.This interoperability covers hardware and software.Thus, vendors can
write applications on various hardware platforms and operating systems using a wide vari-
ety of programming languages, operating over different vendor networks.

CORBA, and similar technologies like DCOM, can be considered the middleware for
a variety of computer software applications.Whereas CORBA represents only one type of
middleware (later we will see some other implementations, like Java’s RMI), the concepts
behind middleware are consistent, regardless of the approach taken. Basically, middleware
provides services that allow application processes to interact with each other over a net-
work.These systems are often referred to as multi-tiered systems. For example, a 3-tiered sys-
tem is presented in Figure 13.8. In this case, the presentation layer is separated from the
data layer by the allocation layer in the middle.These processes can be running on one or
more machines.This is where the term distributed comes into play.The processes (or as far
as this book is concerned, the objects) are distributed across a network.This network can
be proprietary, or it might be the Internet.

This is where objects fit into the picture.The OMG states:“CORBA applications are
composed of objects.” So, as you can tell, objects are a major part of the world of distrib-
uted computing.The OMG goes on to say that these objects “are individual units of run-
ning software that combine functionality and data, and that frequently (but not always)
represent something in the real world.”

One of the most obvious examples of such a system is that of a shopping cart.We can
relate this shopping cart example to our earlier discussions on the instantiation of objects.
When you visit an e-commerce site to purchase merchandise, you are assigned your own
individual shopping cart.Thus, each customer has her own shopping cart. In this case, each
customer will have an object, which includes all the attributes and behaviors of a shopping
cart object.

http://www.omg.org

261Distributed Objects and the Enterprise

Process Management

Application
Tier

Data Storage
Tier

WWW-
Browser

GUI Client

Figure 13.8 A 3-tiered system.

Although each customer object has the same attributes and behaviors, each customer will
obviously have different attribute assignments, such as name, address, and so on.This shop-
ping cart object can then be sent anywhere across the network.There will also be other
objects in the system that represent merchandise, warehouses, and so on.

Wrappers
As we explained earlier in the book, one common use of objects is that of a wrapper. Today
there are a lot of applications written on legacy systems. In many cases, changing these
legacy applications is either impractical or not cost-effective. One elegant way to connect
legacy applications to newer distributed systems is to create an object wrapper that inter-
faces with the legacy system.

One of the benefits of using CORBA to implement a system such as our shopping cart
application is that the objects can be accessed by services written in different languages.To
accomplish this task, CORBA defines an interface to which all languages must conform.
The CORBA concept of an interface fits in well with the discussion we had about creat-
ing contracts in Chapter 8,“Frameworks and Reuse: Designing with Interfaces and Ab-
stract Classes.”The CORBA interface is called the Interface Definition Language (IDL). For
CORBA to work, both sides of the wire, the client and server, must adhere to the con-
tract as stated in the IDL.

Yet another term we covered earlier in the book is used in this discussion—marshaling.
Remember that marshaling is the act of taking an object, decomposing it into a format
that can be sent over a network, and then reconstituting it at the other end.Thus, by hav-
ing both the client and the server conform to the IDL, an object can be marshaled across a
network regardless of the programming language used.

All the objects that move around in a CORBA system are routed by an application
called an Object Request Broker (ORB).You might have already noticed that the
acronym ORB is actually part of the acronym CORBA.The ORB is what makes every-
thing go in a CORBA application.The ORB takes care of routing requests from clients
to objects, as well as getting the response back to the appropriate destination.

262 Chapter 13 Objects and the Internet

client

ORB

stub

object

skeleton

Figure 13.9 CORBA parts.

Languages Supported
At this point in time, CORBA supports the following languages: C, C++, Java, COBOL,
Smalltalk, Ada, Lisp, Python, and IDLscript.

Again, we can see how CORBA and distributed computing works hand-in-hand with the
concepts we have studied throughout this book.The OMG states that

This separation of interface from implementation, enabled by OMG IDL, is the

essence of CORBA.

Furthermore,

Clients access objects only through their advertised interface, invoking only those

operations that the object exposes through its IDL interface, with only those parameters

(input and output) that are included in the invocation.

To get a flavor of what the IDL looks like, consider the e-business example we used in
Chapter 8. In this case, let’s revisit the UML diagram of Figure 8.7 and create a subset of
the Shop class. If we decide to create an interface of Inventory, we could create some-
thing like the following:

interface Inventory {

string[] getInventory ();

string[] buyInventory (in string product);

}

In this case, we have an interface that defines how to list and purchase inventory.This in-
terface is then compiled into two entities:

n Stubs that act as the connection between the client and the ORB
n A skeleton that acts as the connection between the ORB and the object

These IDL stubs and skeletons form the contract that all interacting parties must follow.
Figure 13.9 shows an illustration of how the various CORBA parts interact.

The really interesting thing about all this is that when a client wants the service of some
object, it does not need to know anything about the object it is requesting, including
where it resides.The client simply invokes the object (and the service) it wants.To the
client, it appears that this invocation is local, as though it’s invoking an object that’s on the

263Distributed Objects and the Enterprise

local system.This invocation is passed through the ORB. If the ORB determines that the
desired object is actually a remote object, the ORB routes the request. If everything works
properly, the client will not know where the actual object servicing it resides. Figure 13.10
shows how the ORB routing works over a network.

Internet Inter-ORB Protocol
Just as HTTP is the protocol for web page transactions, IIOP (Internet Inter-ORB Protocol) is a
protocol for distributed objects that can be written in a variety of programming languages.
IIOP is a fundamental piece of standards like CORBA and Java RMI.

Web Services Definition
Web services have evolved quickly over the past several years. In fact, when the first edi-
tion of this book was published, much of the current technology was in its infancy.At this
point in time, we will use the W3C general definition of a web service as a “client and a
server that communicate using XML messages using the SOAP (Simple Object Access
Protocol) standard.”

SOAP is a communication protocol used for sending messages over the Internet.
SOAP is theoretically platform and language independent and is based on XML. SOAP
communicates between applications using the HTTP protocol, since it is common for
user client applications to utilize browsers. SOAP extends the functionality of HTTP as to
provide more functional web services.

Since early on in the evolution of distributed computing, remote procedure calls
(RPC) have been a part of the equation.The primary motivation for SOAP is to perform
remote procedure calls over HTTP using XML.With all of these brief descriptions out of
the way, we can describe SOAP in a nutshell: SOAP is XML-based and is a protocol for dis-
tributed applications.

The major drawback with technologies such as CORBA and DCOM is that they are
basically proprietary and have their own binary formats. SOAP is text-based, being writ-
ten in XML, and is considered much simpler to use when compared to CORBA and
DCOM.This is similar to the advantages outlined in the section,“Using XML in the Se-
rialization Process,” of Chapter 12.

In effect, to work as seamlessly as possible, CORBA and DCOM systems must com-
municate with similar systems.This is a significant limitation in the current technological
environment: since you don’t really know what is on the other side of the wire.And due

client

ORB

stub

object

skeleton

client

ORB

stub

object

skeleton

IIOP

Figure 13.10 ORB routing.

264 Chapter 13 Objects and the Internet

to this fact, perhaps the biggest advantage that SOAP has going for it is that it has most of
the major software companies on board with its standard.

As described over and over in this book, one of the major advantages of object tech-
nology is that of wrappers. SOAP can be thought of as a wrapper that, while not an exact
replacement for technologies like DCOM, Enterprise JavaBeans or CORBA, it does
“wrap” them for more efficient use over the Internet.This “wrapping” ability allows com-
panies to standardize their own network communications, even though there may be dis-
parate technologies within the company itself.

Whatever the description of SOAP, it is important to note that, as basic HTML, SOAP
is a stateless, one-way messaging system. Because of this and other features, SOAP is not a
total replacement for technologies like DCOM, Enterprise JavaBeans, CORBA or
RMI—it is a complimentary technology.

In keeping with the theme of this book, the following SOAP example focuses on ob-
ject concepts and not any specific SOAP technology, coding or otherwise.

SOAP
The example presented in this chapter shows the flow of objects through a distributed sys-
tem. A complete sample application is included in the accompanying media but is way too
large to fit in the pages of this book.

For this example, let’s create a Warehouse application.This application utilizes a browser as
the client, which then uses a set of web services to transact business with a Warehouse sys-
tem that resides somewhere on the network.

We use the following model for our SOAP example. Figure 13.11 provides a visual di-
agram of the system.

The file mwsoap.xml is the XML description of the structure of the various transactions
handled by the web services.This description of Invoice. xsd is shown in the following
listing.

mwsoap.xml

Application

Web
Services

Transaction

Warehouse

Figure 13.11 SOAP example.

265Distributed Objects and the Enterprise

<?xml version=”1.0” encoding=”utf-8”?>

<xs:schema targetNamespace=”http://ootp.org/invoice.xsd”
elementFormDefault=”qualified”

xmlns=”http://ootp.org/invoice.xsd” xmlns:mstns=”http://ootp.org/invoice.xsd”

xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

<xs:element name=”Invoice”>

<xs:complexType>

<xs:sequence>

<xs:element name=”Address” minOccurs=”1”>

<xs:complexType>

<xs:sequence />

<xs:attribute name=”Street” type=”xs:string” />

<xs:attribute name=”City” type=”xs:string” />

<xs:attribute name=”State” type=”xs:string” />

<xs:attribute name=”Zip” type=”xs:int” />

<xs:attribute name=”Country” type=”xs:string” />

</xs:complexType>

</xs:element>

<xs:element name=”Package”>

<xs:complexType>

<xs:sequence />

<xs:attribute name=”Description” type=”xs:string” />

<xs:attribute name=”Weight” type=”xs:short” />

<xs:attribute name=”Priority” type=”xs:boolean” />

<xs:attribute name=”Insured” type=”xs:boolean” />

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name=”name” type=”xs:string” />

</xs:complexType>

</xs:element>

</xs:schema>

The Invoice.xsd file describes how an invoice is structured and how applications must
conform to its definitions.This file is, in effect, a schema in the same way that a schema is
used in a database system. Note that, per this Invoice.xsd file, an invoice is comprised of
an Address and Package. Further, the Address and Package are built of attributes like
Description, Weight, etc. Finally, these attributes are declared as specific data types like,
string, short, etc. Figure 13.12 shows graphically what this relationship looks like.

In this example, while the Invoice.xsd file describes how the data is structured, the
mwsoap.xml file represents what the data is.An application, written in a language like C#
.NET,VB .NET,ASP.NET or Java, uses the Invoice.xsd file to construct valid XML files
that are then sent to other applications over the network.These applications would use
the same Invoice.xsd file to deconstruct the mwsoap.xml file for use its use. In many
ways, you can think of the Invoice.xsd file as a sort of contract, in a similar way to the

266 Chapter 13 Objects and the Internet

E
A
A
A
A
A

Package
Description
Weight
Priority
Insured

E
A
A
A
A

(Package)
string
short
boolean
boolean

Address
Street
City
State
Zip
Country

(Address)
string
string
string
int
string

Invoice
Address
Package
name

E
E
E
A

(Invoice)
(Address)
(Package)
string –

Figure 13.12 Invoice.xsx (visual representation of schema).

concept of a contract in the chapter 8, Frameworks and Reuse: Designing with Interfaces
and Abstract classes.

The following is the mwsoap.xml file that contains specific data embedded in its
SOAP/XML format.
<?xml version=”1.0” encoding=”utf-8”?>

<soap:envelope xmlns:soap=”http://www.w3.org/2001/06/soap-envelope”>

<soap:Header>

<mySOAPHeader:transaction xmlns:mySOAPHeader=”soap-transaction”
soap:mustUnderstand=”true”>

<headerId>8675309</headerId>

</mySOAPHeader:transaction>

</soap:Header>

<soap:Body>

<mySOAPBody xmlns=”http://ootp.org/Invoice.xsd”>

<invoice name=”Jenny Smith”>

<address street=”475 Oak Lane”

city=”Somewheresville”

state=”Nebraska”

zip=”23654”

country=”USA”/>

<package description=”22 inch Plasma Monitor”

weight=”22”

priority=”false”

insured=”true” />

</invoice>

267Distributed Objects and the Enterprise

</mySOAPBody>

</soap:Body>

</soap:envelope>

Web Services Code
The only piece of the model left to cover is the code applications themselves.The three
classes that correspond to the Invoice, Address and Package are presented in the follow-
ing in C# .NET. Equivalent code is presented in Visual Basic .NET at the end of this
chapter.

It is important to note that the applications can be of any language.This is the beauty
of the SOAP/XML approach. Each application must be able to parse the XML file—and
that it basically the only requirement as seen in Figure 13.13. How an application uses the
data extracted is totally up to the application.

As a result of this approach, the specific language, or platform for that matter, is irrelevant.
Theoretically, any language can perform a parsing operation, and that is basically what is
needed in this SOAP/XML approach.

Of course, as developers it is helpful to take a look at the code directly. In the follow-
ing sections, the C# .NET code is presented to help illustrate how the system described
in Figure 13.12 is implemented.The corresponding VB .NET code is supplied in the
chapter’s code appendix.

Invoice.cs
The following code is the C# .NET implementation of the Invoice class that is repre-
sented in Figure 13.12:

using System;

using System.Data;

using System.Configuration;

using System.Xml;

using System.Xml.Serialization;

Application Program (Parser) Application Program (Parser)

Web
Services

XML File (SOAP) XML File (SOAP)´

Figure 13.13 Parsing the SOAP/XML file.

268 Chapter 13 Objects and the Internet

namespace WebServices

{

[XmlRoot(“invoice”)]

public class Invoice

{

public Invoice(String name, Address address, ShippingPackage package)

{

this.Name = name;

this.Address = address;

this.Package = package;

}

private String strName;

[XmlAttribute(“name”)]

public String Name

{

get { return strName; }

set { strName = value; }

}

private Address objAddress;

[XmlElement(“address”)]

public Address Address

{

get { return objAddress; }

set { objAddress = value; }

}

private ShippingPackage objPackage;

[XmlElement(“package”)]

public ShippingPackage Package

{

get { return objPackage; }

set { objPackage = value; }

}

}

}

Invoice.vb
The following code is the VB .NET implementation of the Invoice class that is repre-
sented in Figure 13.12:

Imports Microsoft.VisualBasic

Imports System

Imports System.Data

Imports System.Configuration

269Distributed Objects and the Enterprise

Imports System.Xml

Imports System.Xml.Serialization

<XmlRoot(“invoice”)> _

Public Class Invoice

Public Sub New(ByVal name As String,

ByVal itemAddress As Address, ByVal itemPackage As Package)

Me.Name = name

Me.Address = itemAddress

Me.Package = itemPackage

End Sub

Private strName As String

<XmlAttribute(“name”)> _

Public Property Name() As String

Get

Return strName

End Get

Set(ByVal value As String)

strName = value

End Set

End Property

<XmlElement(“address”)> _

Private objAddress As Address

Public Property Address() As Address

Get

Return objAddress

End Get

Set(ByVal value As Address)

objAddress = value

End Set

End Property

Private objPackage As Package

<XmlElement(“package”)> _

Public Property Package() As Package

Get

Return objPackage

End Get

Set(ByVal value As Package)

objPackage = value

End Set

End Property

End Class

270 Chapter 13 Objects and the Internet

Conclusion
In this chapter, we have covered some of the technology available for using objects in
conjunction with web applications. It is important to differentiate between objects em-
bedded in a web page (such as JavaScript) and objects use in a distributed system.

Distributed objects have evolved quickly over the past several years.There are now
many options in the distributed object market; however, the combination of SOAP and
XML has made the design of distributed systems much more standard.

References
Savitch,Walter. Absolute Java, 3rd ed.Addison-Wesley, 2008. Boston MA.
Walther, Stephen. ASP.NET 3.5 Unleashed. Sams Publishing, 2008. Indianapolis, IN.
Skeet, Jon. C# in Depth:What You Need to Master C# 2 and 3.Manning, 2008.Greenwich,CT.
Deitel, et al. C# For Experienced Programmers. Prentice Hall, 2003. Upper Saddle River,

New Jersey.
Deitel, et al. Visual Basic .NET For Experienced Programmers. Prentice Hall, 2003. Upper

Saddle River, New Jersey.
Conallen, Jim. Building Web Applications with UML.Addison-Wesley, 2000. Boston, MA.
Jaworski, Jamie. Java 2 Platform Unleashed. Sams Publishing, 1999. Indianapolis, IN.
http://www.w3schools.com/media/media_object.asp
http://www.w3.org

http://www.w3schools.com/media/media_object.asp
http://www.w3.org

14
Objects and Client/
Server Applications

Chapter 13,“Objects and the Internet,” covered the concept of distributed objects. In
that chapter, the Internet was the primary highway that the objects navigated. In this chap-
ter we narrow the scope a bit and explore the topic of sending objects across a
client/server network.

Although objects in a distributed network do not necessarily follow a specific path, an
object on a client/server journey is more of a point-to-point journey—at least in a con-
ceptual sense.

Because many of the concepts described in Chapter 13 apply to this chapter as well,
this chapter focuses primarily on the higher-level concepts of the client/server model.

Client/Server Approaches
As we have seen in several of the previous chapters, XML has had a major impact on the
development technologies used today. For example, a distributed object model can either
be build on proprietary system or use a non-proprietary approach based on technologies
like SOAP/XML.

The same can be said of a client/server model.An application can be built solely on a
proprietary system or on a design using an XML. In this chapter, both models are cov-
ered.We use Java to describe a proprietary approach that will only execute in a Java envi-
ronment, even though Java can be used in a non-proprietary solution as well.

Then, C# .NET will be used to illustrate the XML based approach with the VB .NET
code presented at the end of the chapter.

272 Chapter 14 Objects and Client/Server Applications

Client Server

Object

Figure 14.1 Basic
client/server flow.

Proprietary Approach
In this example, Java is used to illustrate how a direct point-to-point connection is made
over a network.To accomplish this, I use an example that I have been using for many
years, sending an object from a client to a server, possibly changing the object by the
server and then sending it back to the client.

This basic flow is illustrated in Figure 14.1.

In this design, the client creates an object and then sends it to the server.The server cre-
ates a reference to the object to access it.The server then may update the object’s attrib-
utes and then send it back to the client.

Serialized Object Code
We start by creating a simple TextMessage class that contains attributes called name and
message.The class also contains a constructor as well as getters and setters.The complete
TextMessage class is presented in the following code.

import java.io.*;

import java.util.*;

public class TextMessage implements Serializable {

public String name;

public String message;

// TextMessage ‘s Constructor.

TextMessage(String n) {

message = “ “;

name= n;

}

// Objects ‘getter’ function.

public String getName() {

return name;

273Proprietary Approach

}

// Objects ‘getter’ function.

public String getTextMessage() {

return message;

}

// Objects ‘setter’ function.

public void setTextMessage(String inTextMessage) {

message = inTextMessage;

}

}

This is a pretty simple class.The constructor initializes the name attribute via a parame-
ter and sets the message to blanks.The primary item to notice is that the class is serialized
in a proprietary Java binary format.

Client Code
The client code uses the TextMessage class to create an object and start it on a journey
to the server and back.The client must perform the following tasks:

n Get the user information
n Create an object
n Set the attributes
n Create a socket connection
n Create the output streams
n Write the object
n Close the streams

The code for this client is presented in the following listing.The comments provide most
of the code commentary.

import java.io.*;

import java.net.*;

/*

* The Client for TextMessage

*/

public class Client {

public static void main(String[] arg) {

try {

String message = “ “;

String name = “ “;

System.out.print(“Please enter name: “);

name = getString();

// Create a TextMessage object

TextMessage myTextMessage = new TextMessage(name);

System.out.print(“message: “);

message = getString();

// Use the ‘setter’ to set the TextMessage

myTextMessage.setTextMessage(message);

// Create a socket connection

Socket socketToServer = new Socket(“127.0.0.1”, 11111);

// Create the ObjectOutputStream

ObjectOutputStream myOutputStream =

new ObjectOutputStream(socketToServer.getOutputStream());

// Write the myTextMessage object to the OutputStream

myOutputStream.writeObject(myTextMessage);

// Close the streams

myOutputStream.close();

} catch (Exception e) {System.out.println(e);}

}

public static String getString() throws Exception {

// open keyboard for input (call it ‘stdin’)

BufferedReader stdin =

new BufferedReader(new InputStreamReader(System.in), 1);

String s1 = stdin.readLine();

return (s1);

}

}

The most important points to make about this client code revolve around the network
connections. In this example, the following line of code defines where the client will
connect to the server:

Socket socketToServer = new Socket(“127.0.0.1”, 11111);

274 Chapter 14 Objects and Client/Server Applications

275Proprietary Approach

When the socket is created, the two parameters passed represent the IP address and the
virtual socket the client attempts to connect to.

The IP address 127.0.0.1 is a loop-back, meaning that the client will attempt to con-
nect to a server that is local. In short, the client and server are running on the same ma-
chine.The only obvious condition is that server must be launched first.

Using this loop-back IP address is very useful when testing applications. Instead of re-
quiring a connection to a network, the underlying logic of an application can be tested
locally—which makes the initial testing much simpler. Later, more general testing can be
performed with a real IP address.

Besides the IP address, the virtual port must be specified in the parameter list. In this
case an arbitrary value of 11111 is chosen.The only condition with this value is that the
server that the client attempts to connect to must be listening at this port.

Once the client does establish valid communication with the server, and the object is
sent and retrieved, the client application simply terminates—placing a loop in the code to
make the client perform again.

The only other issue of note in this code is the method at the end of the class that
performs the task of retrieving a line from the keyboard.This is the user input, akin to
typing in a text message on your cell phone.

Server Code
On the other side of the wire, the server code performs the following tasks:

n Create an object reference
n Listen to the virtual port 11111
n Wait for a client to connect
n Create the Input/Output streams
n Read the TextMessage object
n Print the message

The code for the server is listed here:

import java.io.*;

import java.net.*;

/*

* The Server for TextMessage.

*/

public class Server {

public static void main(String[] arg) {

// create a reference for an object to come from the client.

TextMessage myTextMessage = null;

try {

// Start the Server listening to port 11111

ServerSocket myServerSocket = new ServerSocket(11111);

System.out.println(“Ready\n”);

// Wait here until a Client attempts to connect

Socket incoming = myServerSocket.accept();

// Create an ObjectInputStream

ObjectInputStream myInputStream

= new ObjectInputStream(incoming.getInputStream());

// Read the object from the socket that has the client

myTextMessage = (TextMessage)myInputStream.readObject();

System.out.println(myTextMessage.getName() + “ : “

+ myTextMessage.getTextMessage()+ “\n”);

// Close the streams

myInputStream.close();

} catch(Exception e) {

System.out.println(e);

}

}

}

Just as with the client, there is no loop in the code. It is fairly simple to use a loop so
that the server can handle multiple clients—but this functionality is not central to the
topic here.

It is also possible for the server to update the project and send it back to the client. For
example, the client could also create an input stream and read the object back from the
server—just as the server can create an output stream and send the object back to the
client.

Running the Proprietary Client/Server Example
To simplify matters the client/server example is run using basic DOS shells so we don’t
have to use a GUI or run it from an Integrated Development Environment (IDE). In the
next section, we will create modules that will run from within a GUI and an IDE.

276 Chapter 14 Objects and Client/Server Applications

277Proprietary Approach

The first step in the process is to launch the server.Then, from a second DOS shell, the
client is launched.The server simply prints out a message indicating that it is ready—and
it waits.The client requests a name and a message that the user must type in.

Once this is accomplished, the server displays the message that the client has sent.
Figure 14.2 shows the server session, and Figure 14.3 shows the client session.Again, both
the server and the client can contain loops that will allow more than one pass.This exam-
ple was kept as simple as possible to illustrate the technology.

The client requests that name of the user as well as the message that the user wants to
send. In a real-world text messaging system, like a cell phone, the server would use the
address entered by the user (basically the telephone number) to forward the message to a
second user, not simply print it out.

Figure 14.2 Running the server.

Figure 14.3 Running the client.

278 Chapter 14 Objects and Client/Server Applications

Client Server

Object

XML Doc

Figure 14.4 XML approach to
client/server communication.

Nonproprietary Approach
The previous example was handled in a proprietary manner.To create a nonproprietary
approach we can utilize XML technology just like we did with data persistence and dis-
tributed object.

Using the XML approach allows us to send the objects back-and-forth between appli-
cations written in various languages and, theoretically, between various platforms.The
model can be updated to reflect this, as shown in Figure 14.4.

Although many of the underlying concepts are the same, the fundamental way that the
object is decomposed and reconstituted shifts from a proprietary, binary format to a non-
proprietary text-based XML format.

To provide some variety, we use an example based on a CheckingAccount class.

Object Definition Code
We can immediately see, by inspecting the code that the XML definition of the object is
embedded directly in the class itself (please see Chapter 11,“Objects and Portable Data:
XML,” for a description of this approach).The C# .NET code for the CheckingAccount
class is listed in the following.The corresponding Visual Basic .NET code is listed at the
end of this chapter.

using System;

using System.Collections;

using System.IO;

using System.Xml;

using System.Xml.Serialization;

namespace Server

{

[XmlRoot(“account”)]

public class CheckingAccount

{

279Nonproprietary Approach

private String strName;

private int intAccountNumber;

/// <summary>

/// Accessor methods for strName

/// </summary>

[XmlElement(“name”)]

public String Name

{

get { return strName; }

set { strName = value; }

}

/// <summary>

/// Accessor Methods for intAccountNumber

/// </summary>

[XmlElement(“account_num”)]

public int AccountNumber

{

get { return intAccountNumber; }

set { intAccountNumber = value; }

}

/// <summary>

/// Default constructor

/// </summary>

public CheckingAccount()

{

this.Name = “John Doe”;

this.AccountNumber = 54321;

Console.WriteLine(“Creating Checking Account!”);

}

}

}

Again, the really interesting issue with this class definition is that, while the class con-
tains the requisite attributes and methods, the attributes also contain properties that corre-
spond to the XML definitions of the attributes.

In short, in both these C# .NET and VB .NET examples, the class is created around
the XML definitions.This approach can be accomplished with Java as well. In fact, by us-
ing the XML approach, we can basically use whatever language or platform we want in-
terchangeably.That is the beauty of the non-proprietary approach.

Also note that for these C# .NET and VB .NET examples, we create a namespace for
our projects.

280 Chapter 14 Objects and Client/Server Applications

Client Code
For this example, the client performs the following tasks:

n Create the checkingAccount object
n Create the socket
n Serialize the object to XML
n Create the stream
n Serialize the object to the stream
n Close the resources
n Close the streams

In most case, the comments can provide the explanation of the program flow.The C#
.NET client code is presented here:

using System;

using System.Collections;

using System.IO;

using System.Xml;

using System.Xml.Serialization;

using System.Net.Sockets;

using System.Net;

using System.Text;

namespace Client

{

class Client

{

public static void Connect()

{

CheckingAccount myAccount = new CheckingAccount();

try

{

//Create our TCP Socket

TcpClient client = new TcpClient(“127.0.0.1”, 11111);

//Prepare to serialize our CheckingAccount object to XML

XmlSerializer myXmlFactory =

new XmlSerializer(typeof(CheckingAccount));

//Create our TCP Stream

NetworkStream stream = client.GetStream();

// Serialize our object to the TCP Stream

myXmlFactory.Serialize(stream, myAccount);

281Nonproprietary Approach

// Close all of our resources

stream.Close();

client.Close();

}

catch (Exception ex)

{

Console.WriteLine(“Exception: {0}”, ex);

}

Console.WriteLine(“Press any key to continue...”);

Console.ReadKey();

}

}

}

Server Code
In this case, we do use a loop (in fact a couple of loops) to implement this version of the
server.Again, we can let the code comments provide the flow; however, the server basi-
cally provides the following functions:

n Create the checkingAccount object references
n Connect to the socket and listen
n Setup the input stream
n Create the stream
n Read the bytes off the stream
n Serialize the object to the stream
n Close everything down

The C# .NET code for the server is listed here:

using System;

using System.Collections.Generic;

using System.Text;

using System.Net.Sockets;

using System.Net;

using System.Xml;

using System.Xml.Serialization;

using System.IO;

using System.Runtime.Serialization;

namespace Server

{

class Server

{

public Server()

282 Chapter 14 Objects and Client/Server Applications

{

TcpListener server = null;

TcpClient client = null;

try

{

//Create our Socket Listener and start it

server = new TcpListener(IPAddress.Parse(“127.0.0.1”), 11111);

server.Start();

//Setup our input buffer

Byte[] bytes = new Byte[256];

//Loop indefinitely

while (true)

{

//Begin accepting incoming transmissions in block mode

client = server.AcceptTcpClient();

Console.WriteLine(“Connected!”);

//Open our stream

NetworkStream stream = client.GetStream();

//Read all the data from the stream

int i;

while ((i = stream.Read(bytes, 0, bytes.Length)) != 0)

{

//Prepare a format that the Serializer can read

MemoryStream ms = new MemoryStream(bytes);

//Prepare the Serializer

XmlSerializer myXmlFactory =

new XmlSerializer(typeof(CheckingAccount));

//Create our CheckingAccount from the stream

CheckingAccount myRestoredAccount =

(CheckingAccount)myXmlFactory.Deserialize(ms);

//Now demonstrate that the object is indeed created

Console.WriteLine(“Name: {0}, Account Number: {1}.”,

myRestoredAccount.Name, myRestoredAccount.
AccountNumber);

//Throw an exception to exit the loop

throw new Exception(“ignore”);

}

}

}

catch (Exception ex)

{

if (!ex.Message.Equals(“ignore”))

{ Console.WriteLine(“Exception: {0}”, ex); } }

283Conclusion

finally

{

//Close our resources

client.Close();

server.Stop();

}

Console.WriteLine(“Press any key to continue...”);

Console.ReadKey();

}

}

}

Running the Nonproprietary Client/Server Example
To execute this example, you can create a project with Visual Studio and launch the
C#.NET code with a simple application like this:

using System;

using System.Collections.Generic;

using System.Text;

using System.Threading;

namespace Server

{

class Program

{

static void Main(string[] args)

{

Server server = new Server();

}

}

}

Conclusion
In this chapter, we covered the concept of a client-server connection.We took two dis-
tinct approaches. First, we used Java to create a proprietary, binary system to move the ob-
ject along the network connection. In the second approach, we used a non-proprietary
approach using .NET (both C# and VB). Java could also be used in this non-proprietary,
XML-based scenario.

The importance of this chapter, as well as Chapter 11 and Chapter 13, is that XML is
used to move the objects across various networks, whether a point-to-point network or a
distributed network.

284 Chapter 14 Objects and Client/Server Applications

References
Savitch,Walter. Absolute Java, 3rd ed.Addison-Wesley, 2008. Boston, MA.
Walther, Stephen. ASP.NET 3.5 Unleashed. Sams Publishing, 2008. Indianapolis, IN.
Skeet, Jon. C# in Depth:What You Need to Master C# 2 and 3. Manning, 2008.

Greenwich, CT.
Deitel, et al. C# For Experienced Programmers. Prentice Hall, 2003. Upper Saddle River,

New Jersey.
Deitel, et al. Visual Basic .NET For Experienced Programmers. Prentice Hall, 2003. Upper

Saddle River, New Jersey.
Jaworski, Jamie. Java 2 Platform Unleashed. Sams Publishing, 1999. Indianapolis, IN.
Flanagan, David, et al. Java Enterprise in a Nutshell. O’Reilly, 1999. Sebastopol, CA.
Farley, Jim. Java Distributed Computing. O’Reilly, 1998. Sebastopol, CA.
Sun Microsystems: http://java.sun.com/

Example Code Used in This Chapter
The following code is presented in VB .NET to correspond to the C# .NET code pro-
vided in the chapter.

The Client/Server Example—VB .NET:
Object Definition Code

Imports System
Imports System.Xml
Imports System.Xml.Serialization

<XmlRoot(“account”)> _
Public Class CheckingAccount

Private strName As String
Private intAccountNumber As Integer

<XmlElement(“name”)> _
Public Property Name() As String

Get
Return strName

End Get
Set(ByVal value As String)

strName = value
End Set

End Property

<XmlElement(“account_num”)> _
Public Property AccountNumber() As Integer

Get
Return intAccountNumber

End Get
Set(ByVal value As Integer)

intAccountNumber = value
End Set

End Property

http://java.sun.com/

285Example Code Used in This Chapter

Public Sub New()
Me.Name = “John Doe”
Me.AccountNumber = 20101
Console.WriteLine(“Creating Checking Account!”)

End Sub
End Class

The Client/Server Example—VB .NET: Client Code
Imports System
Imports System.Collections
Imports System.IO
Imports System.Xml
Imports System.Xml.Serialization
Imports System.Net.Sockets
Imports System.Net
Imports System.Text

Public Class Client
Public Shared Sub Connect()

Dim myAccount As CheckingAccount = New CheckingAccount
Try

‘Create our TCP Socket
Dim client As TcpClient = New TcpClient(“127.0.0.1”, 11111)

‘Prepare to serialize our CheckingAccount object to XML
Dim myXmlFactory As XmlSerializer =

New XmlSerializer(GetType(CheckingAccount))
‘Create our TCP Stream
Dim stream As NetworkStream = client.GetStream()

‘Serialize our object to the TCP Stream
myXmlFactory.Serialize(stream, myAccount)

‘Close all of our resources
stream.Close()
client.Close()

Catch ex As Exception
Console.WriteLine(“Exception: {0}”, ex)

End Try
Console.WriteLine(“Press any key to continue...”)
Console.ReadKey()

End Sub
End Class

The Client/Server Example—VB .NET: Server Code
Imports System
Imports System.Collections
Imports System.IO
Imports System.Xml
Imports System.Xml.Serialization

286 Chapter 14 Objects and Client/Server Applications

Imports System.Net.Sockets
Imports System.Net
Imports System.Text

Public Class Server
Public Sub New()

Dim server As TcpListener = Nothing
Dim client As TcpClient = Nothing
Try

‘Create our Socket Listener and start it
server = New TcpListener(IPAddress.Parse(“127.0.0.1”), 11111)
server.Start()

‘Setup our input buffer
Dim bytes(256) As Byte

‘Loop indefinitely
While (True)

‘Begin accepting incoming transmissions in block mode
client = server.AcceptTcpClient()
Console.WriteLine(“Connected!”)

‘Open our stream
Dim stream As NetworkStream = client.GetStream

‘Read all the data of the stream
Dim i As Integer
While ((i = stream.Read(bytes, 0, bytes.Length)) = 0)

‘Prepare a format that the Serializer can read
Dim ms As MemoryStream = New MemoryStream(bytes)
‘Prepare the Serializer
Dim myXmlFactory As XmlSerializer =

New XmlSerializer(GetType(CheckingAccount))
‘Create our CheckingAccount from the stream
Dim myRestoredAccount As CheckingAccount

= CType(myXmlFactory.Deserialize(ms), CheckingAccount)
‘Now demonstrate that the object is indeed created
Console.WriteLine(“Name: {0}, Account Number: {1}”, _

myRestoredAccount.Name, myRestoredAccount.AccountNumber)
‘Throw an exception to break from the loop
Throw New Exception(“ignore”)

End While
End While

Catch ex As Exception
If Not ex.Message = “ignore” Then Console.WriteLine(“Exception: {0}”, ex)

Finally
‘Close our resources
client.Close()
server.Stop()

End Try
Console.WriteLine(“Press any key to continue...”)
Console.ReadKey()

End Sub
End Class

15
Design Patterns

One of the really interesting things about software development is that when you create
a software system, you are actually modeling a real-world system.We have seen this con-
cept throughout this book. For example, when we discussed using inheritance to abstract
out the behaviors and attributes of mammals, the model was based on the true real-life
model, not a contrived model that we created for our own purposes.

Thus, when we create a mammal class, we can use it to build countless other classes,
such as dogs and cats and so on because all mammals share certain behaviors and attrib-
utes.This works when we study dogs, cats, squirrels, and other mammals because we can
see patterns.These patterns allow us to inspect an animal and make the determination
that it is indeed a mammal, or perhaps a reptile, which would have other patterns of be-
haviors and attributes.

Throughout history, humans have used patterns in many aspects of life, including engi-
neering.These patterns go hand-in-hand with the holy grail of software development:
software reuse. In this chapter, we consider design patterns, a relatively new area of soft-
ware development.

Design patterns are perhaps one of the most influential developments that have come
out of the object-oriented movement in the past several years. Patterns lend themselves per-
fectly to the concept of reusable software development.And because object-oriented devel-
opment is all about reuse, patterns and object-oriented development go hand-in-hand.

The basic concept of design patterns revolves around the principle of best practices. By
best practices, we mean that when good and efficient solutions are created, these solutions
are documented in a way that others can benefit from previous successes—as well as learn
from the failures.

One of the most important books on object-oriented software development is Design
Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides.This book was an important milestone for the software
industry and has become so entrenched in the computer science lexicon that the book’s
authors have become known simply as the Gang of Four. In writings on object-oriented
topics, you will often see the Gang of Four referred to simply as the GoF.

288 Chapter 15 Design Patterns

The intent of this chapter is to explain what design patterns are. (Explaining each de-
sign pattern is far beyond the scope of this book and would take more than one volume.)
To accomplish this, we explore each of the three categories (creational, structural, and be-
havioral) of design patterns as defined by the Gang of Four and provide a concrete exam-
ple of one pattern in each category.

Why Design Patterns?
The concept of design patterns did not necessarily start with the need for reusable soft-
ware. In fact, the seminal work on design patterns is about constructing buildings and
cities.As Christopher Alexander noted in A Pattern Language:Towns, Buildings, Construction,
“Each pattern describes a problem which occurs over and over again in our environment,
and then describes the core of the solution to that problem, in such a way that you can
use the solution a million times over, without ever doing it the same way twice.”

The Four Elements of a Pattern
The GoF describe a pattern as having four essential elements:

n The pattern name is a handle we can use to describe a design problem, its solu-
tions, and consequences in a word or two. Naming a pattern immediately in-
creases our design vocabulary. It lets us design at a higher level of abstraction.
Having a vocabulary for patterns lets us talk about them with our colleagues, in our
documentation, and even to ourselves. It makes it easier to think about designs
and to communicate them and their tradeoff to others. Finding good names has
been one of the hardest parts of developing our catalog.

n The problem describes when to apply the pattern. It explains the problem and its
content. It might describe specific design problems, such as how to represent al-
gorithms as objects. It might describe class or object structures that are sympto-
matic of an inflexible design. Sometimes the problem will include a list of condi-
tions that must be met before it makes sense to apply the pattern.

n The solution describes the elements that make up the design, their relationships,
responsibilities, and collaborations. The solution doesn’t describe a particular con-
crete design or implementation because a pattern is like a template that can be
applied in many different situations. Instead, the pattern provides an abstract de-
scription of a design problem, and how a general arrangement of elements
(classes and objects in our case) solves it.

n The consequences are the results and tradeoffs of applying the pattern. Although
consequences are often unvoiced, when we describe design decisions, they are
critical for evaluating design alternatives and for understanding the costs and ben-
efits of the applying pattern. The consequences for software often concern space
and time tradeoffs. They might address language and implementation issues as
well. Because reuse is often a factor in object-oriented design, the consequences
of a pattern include its impact on a system’s flexibility, extensibility, or portability.
Listing the consequences explicitly helps you understand and evaluate them.

289Smalltalk’s Model/View/Controller

user

view

model

controller

applications

Figure 15.1 Model/View/Controller paradigm.

Smalltalk’s Model/View/Controller
As an historical perspective, we need to consider the Model/View/Controller (MVC) in-
troduced in Smalltalk (and used in other object-oriented languages). MVC is often used
to illustrate the origins of design patterns.The Model/View/Controller paradigm was
used to create user interfaces in Smalltalk. Smalltalk was perhaps the first popular object-
oriented language.

Smalltalk
Smalltalk is the result of several great ideas that emerged from Xerox PARC. These ideas in-
cluded the mouse and using a windowing environment, among others. Smalltalk is a wonder-
ful language that provided the foundation for all the object-oriented languages that followed.
One of the complaints about C++ is that it’s not really object-oriented, whereas Smalltalk is.
Although C++ had a larger following in the early days of OO, Smalltalk has always had a very
dedicated core group of supporters. Java is a mostly OO language that embraced the C++
developer base.

Design Patterns defines the MVC components in the following manner:

The Model is the application object, the View is the screen presentation, and the

Controller defines the way the user interface reacts to user input.

The problem with previous paradigms is that the Model,View, and Controller used to be
lumped together in a single entity. For example, a single object would have included all
three of the components.With the MVC paradigm, these three components have separate
and distinct interfaces. So if you want to change the user interface of an application, you
only have to change the View. Figure 15.1 illustrates what the MVC design looks like.

Remember that much of what we have been learning about object-oriented development
has to do with interfaces versus implementation.As much as possible, we want to separate
the interface from the implementation.We also want to separate interface from interface as
much as possible. For example, we do not want to combine multiple interfaces that do not

290 Chapter 15 Design Patterns

have anything to do with one another (or the solution to the problem at hand).The MVC
was one of the early pioneers in this separation of interfaces.The MVC explicitly defines
the interfaces between specific components pertaining to a very common and basic pro-
gramming problem—the creation of user interfaces and their connection to the business
logic and data behind them.

If you follow the MVC concept and separate the user interface, business logic, and
data, your system will be much more flexible and robust. For example, assume that the
user interface is on a client machine, the business logic is on an application server, and the
data is located on a data server. Developing your application in this way would allow you
to change the way the GUI looks without having an impact on the business logic or the
data. Likewise, if your business logic changes and you calculate a specific field differently,
you can change the business logic without having to change the GUI.And finally, if you
want to swap databases and store your data differently, you can change the way the data is
stored on the data server without affecting either the GUI or the business logic.This as-
sumes, of course, that the interfaces between the three do not change.

MVC Example
As a further example of a list box, consider a GUI that includes a list of phone numbers. The
listbox is the view, the phonelist is the model, and the controller is the logic thatbinds the
listbox to the phone list.

MVC Drawbacks
Although the MVC is a great design, it can be somewhat complex, in that there must be a lot
of attention paid to the upfront design. This is a problem with object-oriented design in gen-
eral—there is a fine line between a good design and a cumbersome design. The question re-
mains: How much complexity should you build into the system with regard to a complete
design?

Types of Design Patterns
Design Patterns features 23 patterns grouped into the three categories listed below. Most of
the examples are written in C++, with some written in Smalltalk.The time of the book’s
publication is indicative of the use of C++ and Smalltalk.The publication date of 1995
was right at the cusp of the Internet revolution and the corresponding popularity of the
Java programming language.After the benefit of design patterns became apparent, many
other books rushed in to fill the newly created market. Many of these later books were
written in Java.

In any event, the actual language used is irrelevant. Design Patterns is inherently a design
book, and the patterns can be implemented in any number of languages.The authors of
the book divided the patterns into three categories:

n Creational patterns create objects for you, rather than having you instantiate objects
directly.This gives your program more flexibility in deciding which objects need to
be created for a given case.

291Types of Design Patterns

n Structural patterns help you compose groups of objects into larger structures, such as
complex user interfaces, or accounting data.

n Behavioral patterns help you define the communication between objects in your sys-
tem and how the flow is controlled in a complex program.

In the following sections, we will discuss one example from each of these categories to
provide a flavor of what design patterns actually are. For a comprehensive list and descrip-
tion of individual design patterns, please refer to the books listed at the end of this chapter.

Creational Patterns
The creational patterns consist of the following categories:

n Abstract factory
n Builder
n Factory method
n Prototype
n Singleton

As stated earlier, the scope of this chapter is to describe what a design pattern is—not to
describe each and every pattern in the GoF book.Thus, we will cover a single pattern in
each category.With this in mind, let’s consider an example of a creational pattern, and
look at the singleton pattern.

The Singleton Design Pattern
The singleton pattern, represented in Figure 15.2, is a creational pattern used to regulate
the creation of objects from a class to a single object. For example, if you have a website
that has a counter object to keep track of the hits on your site, you certainly do not want
a new counter to be instantiated each time your web page is actually hit.You want a
counter object instantiated when the first hit is made, but after that, you want to use the
existing object to simply increment the count.

Although there might be other ways to regulate the creation of objects, the best way is to
let the class itself take care of this issue.

Taking Care of Business
Remember, one of the most important OO rules is that an object should take care of itself.
This means that issues regarding the life cycle of a class should be handled in the class,
not delegated to language constructs like static, and so on.

Client Singleton
uses

Figure 15.2 The singleton model.

292 Chapter 15 Design Patterns

Singleton

-static uniqueInstance: Singleton
-singletonDATA

+static Instance(): Singleton
+SingletonOperation()
+GetSingletonData()

return uniqueInstance

Figure 15.3 Singleton UML diagram.

Figure 15.3 shows the UML model for the singleton taken directly from Design Patterns.
Note the property uniqueinstance, which is a static singleton object, and the method
Instance().The other properties and methods are there to indicate that other properties
and methods will be required to support the business logic of the class.

Any other class that needs to access an instance of a Singleton must interface through the
Instance() method.The creation of an object should be controlled through the con-
structor, just like any other OO design.We can require the client to interface through the
Instance() method, and then have the Instance() method call the constructor.

The following Java code illustrates what the code looks like for the general singleton.

public class ClassicSingleton {

private static ClassicSingleton instance = null;

protected ClassicSingleton() {

// Exists only to defeat instantiation.

}

public static ClassicSingleton getInstance() {

if(instance == null) {

instance = new ClassicSingleton();

}

return instance;

}

}

We can create a more specific example for the web page counter example that we used
previously.

package Counter;

public class Counter

{

private int counter;

private static Counter instance = null;

protected Counter()

{

}

293Types of Design Patterns

public static Counter getInstance() {

if(instance == null) {

instance = new Counter ();

System.out.println(“New instance created\n”);

}

return instance;

}

public void incrementCounter()

{

counter++;

}

public int getCounter()

{

return(counter);

}

}

The main point to note about the code is the regulation of the object creation. Only a
single counter object can be created.The code for this is as follows:

public static Counter getInstance() {

if(instance == null) {

instance = new Counter ();

System.out.println(“New instance created\n”);

}

return instance;

}

Note that if the instance is null, it means that an object has yet to be instantiated. In
this event, a new Counter object is created. If the instance is not null, it indicates that a
Counter object has been instantiated, and no new object is to be created. In this case, the
reference to the only object available is returned to the application.

More Than One Reference
There may well be more than one reference to the singleton. If you create references in the
application and each reference is referring to the singleton, you will have to manage the mul-
tiple references.

Although this code is certainly interesting, it is also valuable to see how the singleton is
instantiated and managed by the application.Take a look at the following code:

public class Singleton

{

public static void main(String[] args)

{

294 Chapter 15 Design Patterns

Figure 15.4 Using the Counter singleton.

Counter counter1 = Counter.getInstance();

System.out.println(“Counter : “ + counter1.getCounter());

Counter counter2 = Counter.getInstance();

System.out.println(“Counter : “ + counter2.getCounter());

}

}

Two References to a Single Counter
Be aware that in this example, there are two separate references pointing to the counter.

This code actually uses the Counter singleton.Take a look at how the objects are cre-
ated:

Counter counter1 = Counter.getInstance();

The constructor is not used here.The instantiation of the object is controlled by the
getInstance() method. Figure 15.4 shows what happens when this code is executed.
Note that the message New instance created is only output a single time.When
counter2 is created, it receives a copy of the original object—the same as counter1.

Let’s prove that the references for counter1 and counter2 are the same.We can update
the application code as follows:

package Counter;

public class Singleton

{

public static void main(String[] args)

{

295Types of Design Patterns

Counter counter1 = Counter.getInstance();

counter1.incrementCounter();

counter1.incrementCounter();

System.out.println(“Counter : “ + counter1.getCounter());

Counter counter2 = Counter.getInstance();

counter2.incrementCounter();

System.out.println(“Counter : “ + counter2.getCounter());

}

}

Figure 15.5 shows the output from the singleton application. Note that in this case, we
are incrementing counter1 twice, so the counter will be 2.When we create the counter2
reference, it references the same object as counter1, so when we increment the counter,
it’s now 3 (2+1).

Structural Patterns
Structural patterns are used to create larger structures from groups of objects.The follow-
ing seven design patterns are members of the structural category.

n Adapter
n Bridge
n Composite
n Decorator
n Façade
n Flyweight
n Proxy

Figure 15.5 Using the updated Counter singleton.

296 Chapter 15 Design Patterns

As an example from the structural category, let’s take a look at the adapter pattern.The
adapter pattern is also one of the most important design patterns.This pattern is a good
example of how the implementation and interface are separated.

The Adapter Design Pattern
The adapter pattern is a way for you to create a different interface for a class that already
exists.The adapter pattern basically provides a class wrapper. In other words, you create a
new class that incorporates (wraps) the functionality of an existing class with a new and—
ideally—better interface.A simple example of a wrapper is the Java class Integer.The
Integer class actually wraps a single Integer value inside it.You might wonder why you
would bother to do this. Remember that in an object-oriented system, everything is an
object. In Java, primitives, such as ints, floats, and so on are not actually objects.When you
need to perform functions on these primitives, such as conversions, you need to treat
them as objects.Thus, you create a wrapper object and “wrap” the primitive inside it.
Thus, you can take a primitive like the following:

int myInt = 10;

and then wrap it in an Integer object:

Integer myIntWrapper = new Integer (myInt);

Now you can do a conversion, so we can treat it as a string:

String myString = myIntWrapper.toString();

This wrapper allows us to treat the original integer as an object, thus providing all the
advantages of an object.

As for the adapter pattern itself, consider the example of a mail tool interface. Let’s as-
sume you have purchased some code that provides all the functionality you need to im-
plement a mail client.This tool provides everything you want in a mail client, except you
would like to change the interface slightly. In fact, all you want to do is change the API to
retrieve your mail.

The following class provides a very simple example of a mail client for this example.

package MailTool;

public class MailTool {

public MailTool () {

}

public int retrieveMail() {

System.out.println (“You’ve Got Mail”);

return 0;

}

}

297Types of Design Patterns

When you invoke the retrieveMail() method, your mail is presented with the very
original greeting “You’ve Got Mail.” Now let’s suppose you want to change the interface
in all your company’s clients from retrieveMail() to getMail().You can create an in-
terface to enforce this:

package MailTool;

interface MailInterface {

int getMail();

}

You can now create your own mail tool that wraps the original tool and provide your
own interface:

package MailTool;

class MyMailTool implements MailInterface {

private MailTool yourMailTool;

public MyMailTool () {

yourMailTool= new MailTool();

setYourMailTool(yourMailTool);

}

public int getMail() {

return getYourMailTool().retrieveMail();

}

public MailTool getYourMailTool() {

return yourMailTool ;

}

public void setYourMailTool(MailTool newYourMailTool) {

yourMailTool = newYourMailTool;

}

}

Inside this class, you create an instance of the original mail tool that you want to retro-
fit.This class implements MailInterface, which will force you to implement a
getMail() method. Inside this method, you literally invoke the retrieveMail() method
of the original mail tool.

To use your new class, you simply instantiate your new mail tool and invoke the
getMail() method.

package MailTool;

public class Adapter

{

public static void main(String[] args)

{

MyMailTool myMailTool = new MyMailTool();

myMailTool.getMail();

}

}

298 Chapter 15 Design Patterns

When you do invoke the getMail() method, you are using this new interface to actu-
ally invoke the retrieveMail() method from the original tool.This, of course, is a very
simple example; however, by creating this wrapper, you can actually enhance the interface
and add your own functionality to the original class.

The concept of an adapter is quite simple, but you can create new and powerful inter-
faces using this pattern.

Behavioral Patterns
The behavioral patterns consist of the following categories:

n Chain of response
n Command
n Interpreter
n Iterator
n Mediator
n Memento
n Observer
n State
n Strategy
n Template method
n Visitor

As an example from the behavioral category, let’s take a look at the iterator pattern.
This is one of the most commonly used patterns and is implemented by several program-
ming languages.

The Iterator Design Pattern
Iterators provide a standard mechanism for traversing a collection, such as a vector. Func-
tionality must be provided so that each item of the collection can be accessed one at a
time.The iterator pattern provides information hiding, keeping the internal structure of
the collection secure.The iterator pattern also stipulates that more than one iterator can
be created without interfering with each other. Java actually provides its own implemen-
tation of an iterator.The following code creates a vector and then inserts a number of
strings into it.

package Iterator;

import java.util.*;

299Antipatterns

public class Iterator {

public static void main(String args[]) {

// Instantiate an ArrayList.

ArrayList<String> names = new ArrayList();

// Add values to the ArrayList

names.add(new String(“Joe”));

names.add(new String(“Mary”));

names.add(new String(“Bob”));

names.add(new String(“Sue”));

//Now Iterate through the names

System.out.println(“Names:”);

iterate(names);

}

private static void iterate(ArrayList<String> arl) {

for(String listItem : arl) {

System.out.println(listItem.toString());

}

}

}

Then we create an enumeration so that we can iterate through it.The method
iterate() is provided to perform the actual iteration functionality. In this method, we
use the Java enumeration method hasMoreElements(), which traverses the vector and
lists all of the names.

Antipatterns
Although a design pattern evolves from experiences in a positive manner, antipatterns can be
thought of as collections of experiences that have gone awry. It is well documented that
most software projects are ultimately deemed unsuccessful. In fact, as indicated in the article
“Creating Chaos” by Johnny Johnson, fully one-third of all projects are cancelled outright.
It would seem obvious that many of these failures are caused by poor design decisions.

The term antipattern derives from the fact that design patterns are created to proac-
tively solve a specific type of problem.An antipattern, on the other hand, is a reaction to a
problem and is gleaned from bad experiences. In short, whereas design patterns are based
on solid design practices, antipatterns can be thought of as practices to avoid.

In the November 1995 C++ Report,Andrew Koenig described two facets of antipatterns:

n Those that describe a bad solution to a problem, which result in a bad situation
n Those that describe how to get out of a bad situation and how to proceed from

there to a good solution

300 Chapter 15 Design Patterns

Many people believe that antipatterns are actually more useful than design patterns.This
is because antipatterns are designed to solve problems that have already occurred.This
boils down to the concept of root-cause analysis.A study can be conducted with actual
data that might indicate why the original design, perhaps an actual design pattern, did not
succeed. It might be said that antipatterns emerge from the failure of previous solutions.
Thus, antipatterns have the benefit of hindsight.

For example, in his article “Reuse Patterns and Antipatterns,” Scott Ambler identifies a
pattern called a robust artifact, and defines it as follows:

An item that is well-documented, built to meet general needs instead of project-specific needs,

thoroughly tested, and has several examples to show how to work with it. Items with these qual-

ities are much more likely to be reused than items without them. A Robust Artifact is an item

that is easy to understand and work with.

However, there are certainly many situations when a solution is declared reusable and
then no one ever reuses it.Thus, to illustrate an antipattern, he writes:

Someone other than the original developer must review a Reuseless Artifact to determine

whether or not anyone might be interested in it. If so, the artifact must be reworked to become

a Robust Artifact.

Thus, antipatterns lead to the revision of existing designs, and the continuous refactoring
of those designs until a workable solution is found.

Conclusion
In this chapter, we explored the concept of design patterns. Patterns are part of everyday
life, and this is just the way you should be thinking about object-oriented designs.As with
many things pertaining to information technology, the roots for solutions are founded in
real-life situations.
Although this chapter covered design patterns only briefly, you should explore this topic
in greater detail by picking up one of the books referenced at the end of this chapter.

References
Alexander, Christopher, et al. A Pattern Language:Towns, Buildings, Construction. Oxford

University Press, 1977. Cambridge, United Kingdom.
Gamma, Erich, et al. Design Patterns: Elements of Reusable Object-Oriented Software.Addison-

Wesley, 1995. Boston, MA.
Larman, Craig. Applying UML and Patterns:An Introduction to Object-Oriented Analysis and

Design and Iterative Development, 3rd ed.Wiley, 2004. Hoboken, NJ.
Grand, Mark. Patterns in Java:A Catalog of Reusable Design Patterns Illustrated with UML,

2nd ed.,Volume 1.Wiley, 2002.
Ambler, Scott.“Reuse Patterns and Antipatterns.” 2000 Software Development Magazine.
Jaworski, Jamie. Java 2 Platform Unleashed. Sams Publishing, 1999. Indianapolis, IN.
Johnson, Johnny.“Creating Chaos.” American Programmer, July 1995.

301Example Code Used in This Chapter

Example Code Used in This Chapter
The following code is presented in C# .NET and VB .NET.These examples correspond
to the Java code that is listed inside the chapter itself.

C# .NET

Counter.cs

using System;

using System.Collections.Generic;

using System.Text;

namespace Counter

{

class Counter

{

private int counter;

private static Counter instance = null;

protected Counter()

{

}

public static Counter getInstance()

{

if (instance == null)

{

instance = new Counter();

Console.WriteLine(“New Instance of Counter...”);

}

return instance;

}

public void incrementCounter()

{

counter++;

}

public int getCounter()

{

return counter;

}

}

}

302 Chapter 15 Design Patterns

Singleton.cs

using System;

using System.Collections.Generic;

using System.Text;

namespace Counter

{

class Singleton

{

public Singleton()

{

Counter counter1 = Counter.getInstance();

counter1.incrementCounter();

counter1.incrementCounter();

Console.WriteLine(“Counter = “ + counter1.getCounter());

Counter counter2 = Counter.getInstance();

counter2.incrementCounter();

Console.WriteLine(“Counter = “ + counter2.getCounter());

Console.WriteLine(“Press any key to continue...”);

Console.ReadKey();

}

}

}

MailTool.cs

using System;

namespace MailAdapter

{

class MailTool

{

public MailTool()

{

}

public int retrieveMail()

{

Console.WriteLine(“You’ve got mail!”);

return 0;

}

}

}

303Example Code Used in This Chapter

Mailinterface.cs

using System;

using System.Collections.Generic;

using System.Text;

namespace MailAdapter

{

interface MailInterface

{

int getMail();

}

}

MyMail.cs

namespace MailAdapter

{

class MyMailTool : MailInterface

{

private MailTool yourMailTool;

public MyMailTool()

{

yourMailTool = new MailTool();

setYourMailTool(yourMailTool);

}

public int getMail()

{

return getYourMailTool().retrieveMail();

}

public MailTool getYourMailTool()

{

return yourMailTool;

}

public void setYourMailTool(MailTool newYourMailTool)

{

yourMailTool = newYourMailTool;

}

}

}

Adapter.cs

using System;

using System.Collections.Generic;

304 Chapter 15 Design Patterns

using System.Text;

namespace MailAdapter

{

class Adapter

{

public Adapter()

{

MyMailTool myMailTool = new MyMailTool();

myMailTool.getMail();

Console.WriteLine();

Console.WriteLine(“Press any key to continue...”);

Console.ReadKey();

}

}

}

Iterator.cs

using System;

using System.Collections.Generic;

using System.Text;

using System.Collections;

namespace Iterator

{

class Iterator

{

public Iterator()

{

// Instantiate an Arraylist

ArrayList myList = new ArrayList();

// Add values to the list

myList.Add(“Joe”);

myList.Add(“Mary”);

myList.Add(“Bob”);

myList.Add(“Sue”);

//Iterate through the elements

Console.WriteLine(“Names:”);

iterate(myList);

}

static void iterate(ArrayList arl)

{

305Example Code Used in This Chapter

foreach (String listItem in arl)

{

Console.WriteLine(listItem);

}

}

}

}

VB .NET

Counter.vb

Public Class Counter

Private Shared count As Integer

Public ReadOnly Property counter() As Integer

Get

Return count

End Get

End Property

Public Sub incrementCounter()

count += 1

End Sub

Public Shared Function getInstance() As Counter

Return New Counter

End Function

End Class

Singleton.vb

Public Class Singleton

Sub New()

Dim counter1 As Counter = Counter.getInstance

counter1.incrementCounter()

counter1.incrementCounter()

Console.WriteLine(String.Format(“First Counter: {0}”, counter1.counter))

Dim counter2 As Counter = Counter.getInstance

counter2.incrementCounter()

Console.WriteLine(String.Format(“Second Counter: {0}”, counter2.counter))

End Sub

End Class

306 Chapter 15 Design Patterns

MailTool.vb

Public Class MailTool

Sub New()

End Sub

Public Function retrieveMail() As Integer

Console.WriteLine(“You’ve got mail!”)

Return 0

End Function

End Class

Mailinterface.vb

Public Interface MailInterface

Function getMail() As Integer

End Interface

MyMail.vb

Public Class MyMailTool

Private yourOwnMailTool As MailTool

Sub New()

yourOwnMailTool = New MailTool()

Me.YourMailTool = yourOwnMailTool

End Sub

Public Function getMail() As Integer

Return Me.YourMailTool.retrieveMail()

End Function

Private mtMyMailTool As MailTool

Public Property YourMailTool() As MailTool

Get

Return mtMyMailTool

End Get

Set(ByVal value As MailTool)

Me.mtMyMailTool = value

End Set

End Property

End Class

Adapter.vb

Public Class Adapter

Sub New()

Dim myOwnMailTool As MyMailTool = New MyMailTool()

myOwnMailTool.getMail()

End Sub

End Class

Iterator.vb

Public Class Iterator

Public Sub New()

Dim myList As ArrayList = New ArrayList()

‘Add values to the list

myList.Add(New String(“Joe”))

myList.Add(New String(“Mary”))

myList.Add(New String(“Bob”))

myList.Add(New String(“Sue”))

‘Iterate through the list

Console.WriteLine(vbCrLf)

Console.WriteLine(“Names:”)

iterate(myList)

End Sub

Private Sub iterate(ByVal list As ArrayList)

For Each listItem As String In list

Console.WriteLine(listItem)

Next

End Sub

End Class

307Example Code Used in This Chapter

This page intentionally left blank

Index

Symbols
{} (braces), 64

/**...*/ comment notation, 77

/*...*/ comment notation, 77

// comment notation, 77

- (minus sign), 21, 197

+ (plus sign), 21, 68, 197

A
aborting applications, 60

abstract interfaces, 45-47

abstraction, 23-24, 29

interface design, 45-47
access designations, 197

accessing

attributes, 81-83
object variables, 66
relational databases, 236-237

JDBC, 236-237
ODBC, 236

accessor methods, 12

accessors, 80-83

accuracy versus complexity, 134

adapter design pattern, 296-298

addition

integer addition, 68
matrix addition, 69

aggregation, 183

associations, combining with, 185-186
class diagrams, 201

Alexander, Christopher, 288, 300

Alpha and Beta Companies case study

application-to-application data
transfer, 210-211

data design, 212
data validation, 212-213
XML document, 213-219

Ambler, Scott, 101, 128, 205, 300

analyzing software, 107

antipatterns, 299-300

APIs (application programming interface),
41, 153

application-to-application data transfer,
210-211

applications

aborting, 60
client security, 249
client/server model, 248-249
environmental constraints, 48
horizontal applications, 208
JavaScript, 250-254

Flash objects, 258
movie players, 257
objects, 254-255
sound players, 257
web page controls, 255-256

middleware, 41-43
recovering, 61
server-side validation, 250
standalone applications, 43
vertical applications, 208

Applying UML and Patterns, 300

The Architecture of Complexity, 181

arrays, 240

assigning objects, 70-71

association, 184-185

aggregations, combining with,
185-186

associations

cardinality, 186-188
class diagrams, 201-202
example, 191
multiple object associations, 189-190
optional, 190-191

attributes, 11, 63-64, 130

class attributes, 17, 67, 77-79
accessing, 81-83
initializing, 79
null attributes, 79
private attributes, 78
protecting, 81
static attributes, 78, 81-82
testing for null, 79

class diagrams, 196
defined, 10
initializing, 54, 59
local attributes, 64-65
object attributes, 10, 65-67
private attributes, 19
sharing, 65-67
static attributes, 67

avoiding

dependencies, 186
legacy data, 43

B
behavioral inheritance, 70

behavioral patterns, 291, 298

iterator design pattern, 298-299

310 aggregation

behaviors, 17

inheriting, 134
object behaviors, 13-14

defined, 11
objects, 48

Bet class, 119-120

Beta and Alpha Companies case study

application-to-application data
transfer, 210-211

data design, 212
data validation, 212-213
XML document, 213-219

beta testing, 106

bitwise copies, 70

black boxes, 6

blackjack case study, 109

Bet class, 119-120
Card class, 117
class design, 112-114
class responsibilities, 115-117
collaboration diagrams, 121-123
CRC (class-responsibility-collabora-

tion) cards, 111-112, 124-125
Dealer class, 118
Deck class, 117-118
Hand class, 118
Player class, 119
requirements document, 110-111
statement of work, 109
UML class diagrams, 126-127
UML use-cases, 120-121
user interface prototype, 127

blocks, try/catch blocks, 61-63

Booch, Grady, 194

books

Applying UML and Patterns, 300
Building Web Applications with UML, 270

Designing Object-Oriented Software, 109,
128

Effective C++, 51, 70-71, 101, 146,
173, 192

The Elements of UML Style, 205
Java 2 Platform Unleashed, 236-237
Java Distributed Computing, 242
Java Enterprise in a Nutshell, 242
Java Primer Plus, 71, 84, 101
Object-Oriented Design in Java, 48, 51,

70-71, 84, 101, 127-128, 146, 192
The Object Primer, 109
Patterns in Java:A Catalog of Reusable

Design Patterns Illustrated with UML,
300

Practical Object-Oriented Development
with UML and Java, 205

Teach Yourself XML in 10 Minutes, 223
UML Distilled, 51, 84, 205
The Web Wizard’s Guide to XML, 223
XML: How to Program, 223
XML:Web Warrior Series, 223

braces ({}), 64

bugs, 167

Building Web Applications with UML, 270

bulletproof code, 63

C
C++, 248

C-style comments, 77

Cab class, 78

Cabbie class, 49

accessors, 80-83
attributes, 77-79
class diagram, 194-196
class name, 75-77
comments, 77

311Cabbie class

constructor, 53
constructors, 79-80
private implementation methods, 83-84
public interface methods, 83

CalculatePay() method, 12

calculateSquare() method, 22

calculating

pay, 12
squares of numbers, 19

calling

constructors, 54
methods, 11, 17

Card class, 117

cardinality, 186, 188

class diagrams, 204
Cascading Style Sheets (CSS), 220-222

case studies

Alpha and Beta Companies
application-to-application data

transfer, 210-211
data design, 212
data validation, 212-213
XML document, 213-219

blackjack, 109
Bet class, 119-120
Card class, 117
class design, 112-114
class responsibilities, 115-117
collaboration diagrams, 121-123
CRC (class-responsibility-

collaboration) cards, 111-112,
124-125

Dealer class, 118
Deck class, 117-118
Hand class, 118
Player class, 119
requirements document, 110-111

statement of work, 109
UML class diagrams, 126-127
UML use-cases, 120-121
user interface prototype, 127

Cat class, 23

catch keyword, 61-63

catching exceptions, 63

child classes (subclasses), 23

Ciccozzi, John, 128

Circle class, 26, 155-157

class attributes, 67

class diagrams, 13-14, 18

access designations, 197
aggregations, 201
associations, 201-202
attributes, 196
blackjack case study, 126-127
Cabbie class, 194-196
cardinality, 204
composition, 201
creating, 57-58
DataBaseReader class, 42, 57-58
inheritance, 198-199
interfaces, 200
methods, 197
minus sign (-), 21
plus sign (+), 21
structure of, 194-196

class keyword, 75

class-responsibility-collaboration (CRC) cards,
111-112, 124-125

classes, 14

accessors, 80-83
as object templates, 15, 17
attributes, 17, 67, 77-79

accessing, 81-83
class diagrams, 196

312 Cabbie class

initializing, 54, 59, 79
null attributes, 79
private attributes, 19, 78
protecting, 81
static attributes, 78, 81-82
testing for null, 79

blackjack case study
Bet, 119-120
Card, 117
class responsibilities, 115-117
Dealer, 118
Deck, 117-118
Hand, 118
identifying, 112-114
Player, 119

Cab, 78
Cabbie, 49

accessors, 80-83
attributes, 77-79
class diagram, 194-196
class name, 75-77
comments, 77
constructor, 53
constructors, 79-80
private implementation methods,

83-84
public interface methods, 83

Cat, 23
Circle, 26
class diagrams, 13-14, 18, 109

access designations, 197
aggregations, 201
associations, 201-202
attributes, 196
blackjack case study, 126-127
Cabbie class, 194-196

cardinality, 204
composition, 201
creating, 57-58
DataBaseReader class, 42, 57-58
inheritance, 198-199
interfaces, 200
methods, 197
minus sign (-), 21
plus sign (+), 21
structure of, 194-196

code recompilation, 44
comments, 77

/**...*/ notation, 77
/*...*/ notation, 77

compared to objects, 15-17
constructors, 79-80

calling, 54
default constructors, 54-55
defined, 26, 53
designing, 59-60
multiple constructors, 55-56
return values, 53
structure of, 54
when to provide, 55

Count, 55
creating instances of, 54
DataBaseReader, 41

class diagram, 42, 57-58
defined, 14-15
designing, 8
determining responsibilities of, 108,

115-117
Dog, 23
DriverManager, 238
GermanShepherd, 23
identifying, 108

313classes

implementations, 20
compared to interfaces, 38-40
identifying, 50
public implementation methods, 83

inheritance, 22-25
abstraction, 23-24
advantages of, 23
behavioral inheritance, 70
defined, 29
implementation inheritance, 70
inheritance trees, 23
is-a relationships, 25
multiple inheritance, 69-70
subclasses, 23
superclasses, 23, 58-59

interaction with other classes, 109
interface/implementation paradigm

Java DataBaseReader class example,
41-44

Java Square class example, 21-22
real-world example, 20

interfaces, 19, 40
abstract interfaces, 45-47
compared to implementations, 38-40
designing, 45-47
identifying, 49-50
minimal interfaces, 42, 47
public interface methods, 83
public interfaces, 42-43, 49-50
relationship between, 39

Mammal, 22-23
messages, 17-18
methods

class diagrams, 197
defined, 17
invoking, 11, 17
overloading, 56-57, 80

private methods, 17, 83-84
protected methods, 17
public methods, 17-19, 41-42, 83
shared methods, 63
signatures, 56
static methods, 82

names, 75-77
Number, 65-66
Person, 16-17, 227

attributes, 17
class diagram, 18
methods, 17

polymorphism, 25-28
Poodle, 23
Rectangle, 27
ResultSet, 240
reusable classes, 45-47
SavePerson, 228-230
scope, 64
Shape, 25-28
Square, 21-22
subclasses, 23
superclasses, 23, 58-59

client code

client/server communication, creating
with XML, 280-281

point-to-point connections, creating
in Java, 273

loop-back address, 274
virtual port, 275

client/server applications, creating, 271

nonproprietary approach, 278
client code, 280-281
executing, 283
object definition code, 278-279
server code, 281-283

314 classes

proprietary approach, 272
client code, 273-275
running the server, 276-277
serialized object code, 272-273
server code, 275-276

Coad, Peter, 130, 146, 173, 192

code listings

XML document validation, 212
code recompilation, 44

code reuse, 151-153

UML object model, 172
collaboration, blackjack case study, 121-123

collections, 240

combining

associations and aggregations, 185-186
error-handing techniques, 61
strings, 68

comments, 77

/**...*/ notation, 77
/*...*/ notation, 77
// notation, 77
XML, 213

common behaviors, factoring out, 133

communication, object-to-object, 8-9

comparing pointers, 70

compiling classes, 143, 160, 173

composition, 28-29

aggregation, 183
combining with association, 185-186

association, 183-185
combining with aggregation,

185-186
example, 191
multiple object associations,

189-190
optional, 190-191

class diagrams, 201

defined, 30
dependencies, avoiding, 186
has-a relationships, 29

Conallen, Jim, 270

concatenating strings, 68

connecting to databases, 238-239

constraints, environmental, 48

constructors, 79-80

calling, 54
default constructors, 54-55
defined, 26, 53
designing, 59-60
multiple constructors, 55-56
return values, 53
structure of, 54
when to provide, 55

contracts, 151

abstract classes, 154
compared to abstract classes, 159-161
creating, 162-164
defined, 153-154
example, 155-158
interfaces, 157-158
is-a relationships, 161-162
system plug-in points, 165
when to use, 165

copying

objects, 70-71
references, 70

CORBA (Common Object Request Broker
Architecture), 259-261

Count class, 55

Counter singleton, 291

counters, multiple references, 293-294

CRC (class-responsibility-collaboration) cards,
111-112, 124-125

createStatement() method, 239

315createStatement() method

“Creating Chaos” (article), 299-300

creational patterns, 290-291

singleton design pattern, 291-295
CSS (Cascading Style Sheets), 220-222

customers, 48

D
data

global data, 7
legacy data, avoiding, 43
sending across networks

OO programming, 10
procedural programming, 9

data hiding, 8, 78

DataBaseReader class, 41

class diagram, 42, 57-58
databases (relational)

accessing, 236-237
database connections, 238-239
drivers

documentation, 239
loading, 238

JDBC (Java Database Connectivity),
236-237

legacy data, 235
mapping objects to, 43
ODBC (Open Database

Connectivity), 236
reading with DataBaseReader, 41

class diagram, 42, 57-58
SQL statements, 239-241
writing to, 234-235

Dealer class, 118

Deck class, 117-118

deep copies, 70

default constructors, 54-55

defining static methods, 82

definition inheritance, 158

delineating strings, 239

dependencies, avoiding, 186

design, 103, 287. See also design patterns

adapter design pattern, 296
behavioral patterns, 298
best practices, 287
classes, 8

minimal interfaces, 47
constructors, 59-60
creational patterns, 291
design patterns, 288

Elements of Reusable Object-Oriented
Software, 287, 300

interfaces, 45-47
minimal interfaces, 47

model complexity, 134
MVC (Model/View/Controller),

289-290
robust artifacts, 300
singleton design pattern, 294
structural patterns, 296
systems, 109

classes, 108-109
design guidelines, 104-107
design process, 104
prototypes, 108, 127
rapid prototyping, 104
requirements document, 107-108
RFP (request-for proposal), 107
safety versus economics, 105
software analysis, 107
software testing, 105-106
statement of work, 107
waterfall method, 104-105

316 “Creating Chaos” (article)

design patterns

advantages of, 288
antipatterns, 299-300
behavioral patterns, 291, 298

iterator design pattern, 298-299
consequences, 288
creational patterns, 290-291

singleton design pattern, 291-295
MVC (Model/View/Controller),

289-290
names, 288
problems, 288
solutions, 288
structural patterns, 291, 295

adapter design pattern, 296-298
Designing Object-Oriented Software,

109, 128

diagrams

class diagrams, 13-14, 18, 109
access designations, 197
aggregations, 201
associations, 201-202
attributes, 196
blackjack case study, 126-127
Cabbie class, 194-196
cardinality, 204
composition, 201
creating, 57-58
DataBaseReader class, 42, 57-58
inheritance, 198-199
interfaces, 200
methods, 197
minus sign (-), 21
plus sign (+), 21
structure of, 194-196

collaboration diagrams, blackjack case
study, 121-123

distributed computing, 258-259

distributed objects, 258

CORBA, 259-263
e-business example, 262
IDL, 261
IIOP, 263
interfaces, 261
languages supported, 262
marshaling, 261
OMG, 260
ORBs, 261

Document Type Definitions (DTDs), 210

data validation, 212-213
integrating into XML document,

213-219
documentation drivers, 239

documents

requirements document, 107-108
blackjack case study, 110-111

RFP (request-for proposal), 107
statement of work, 107-109

Dog class, 23

domains, mixing, 186

DonutShop class, 169-170

Downing, Troy, 71, 84, 101

DriverManager class, 238

drivers

documentation, 239
loading, 238

DTDs (Document Type Definitions), 210

data validation, 212-213
integrating into XML document,

213-219

317DTDs (Document Type Definitions)

E
Effective C++, 51, 70-71, 90, 101, 132, 146,

173, 192

Effective C: 50 Specific Ways to Improve
Your Programs and Designs, 88

The Elements of UML Style, 205

emptying stacks, 28

encapsulation, 19

defined, 8, 29
implementations, 20, 40

compared to interfaces, 38-40
identifying, 50
public implementation methods, 83

interface/implementation paradigm
Java DataBaseReader class example,

41-44
Java Square class example, 21-22
real-world example, 20

interfaces, 19-20, 40
abstract interfaces, 45-47
compared to implementations,

38-40
designing, 45-47
GUIs, 38
minimal interfaces, 42, 47
public interface methods, 83
public interfaces, 42-43, 49-50
relationship with classes, 39

enterprise computing, 258

environmental constraints, 48

error handling, 60

aborting applications, 60
bulletproof code, 63
combining error-handing techniques,

61
exceptions

catching, 63

defined, 61
granularity, 62
throwing, 61-62

ignoring errors, 60
recovery, 61
throwing exceptions, 62-63

examples of associations, 191

Exception parameter (catch block), 63

exceptions

catching, 63
defined, 61
granularity, 62
throwing, 61-63

executeQuery() method, 239-240

executeUpdate() method, 239

executing

nonproprietary client/server
communication, 283

SQL statements, 240
extends keyword, 26

F
Farley, Jim, 242, 284

files

saving objects to, 227
serialization, 227-229

example, 227-229
interface/implementation

paradigm, 229-230
Flanagan, David, 242, 284

Flash objects (JavaScript), 258

Flower, Martin, 51, 84, 205

forName() method, 238

frameworks, 152-153

contracts, 168
example, 152
non-reuse approach, 166-168

318 Effective C++

Papa’s Pizza e-business case study,
165-166

UML object model, 168-173

G
generateHeat() method, 159

GermanShepherd class, 23

get() method, 81

getArea() method, 26

getCompanyName() method, 81

getConnection() method, 238

getHours() method, 254

getInstance() method, 294

getMail() method, 297

getMinutes() method, 254

getName() method, 158

getSize() method, 159

getSocialSecurityNumber() method, 12

getSquare() method, 22

getters, 12, 232

Gilbert, Stephen, 51, 71, 84, 101, 128, 146,
192

giveDestination() method, 83

global data, 7

Grand, Mark, 300

granularity (exceptions), 62

graphical user interfaces (GUIs), 38

GUIs (graphical user interfaces), 38

H
Hand class, 118

handing errors, 60

has-a relationships, 29

class diagrams, 201
hasMoreElements() method, 299

Head class, 159

hiding data, 8, 78

horizontal applications, 208

HTML (Hypertext Markup Language), 209,
250

compared to XML, 209-210
tags, 209-210

I
identifying

classes, 108, 112-114
implementations, 50
public interfaces, 49-50
users, 40, 48

IDEs (integrated development environ-
ments), 108

if keyword, 61

ignoring errors, 60

implementation inheritance, 70, 158

implementations, 20, 40

compared to interfaces, 38-40
identifying, 50
interface/implementation paradigm

Java DataBaseReader class example,
41-44

Java Square class example, 21-22
object serialization, 229-230
real-world example, 20

public implementation methods, 83
inheritance, 22-25

abstraction, 23-24
advantages of, 23
behavioral inheritance, 70
class diagrams, 198-199
defined, 29
implementation inheritance, 70
inheritance trees, 23
is-a relationships, 25

319inheritance

multiple inheritance, 69-70
subclasses, 23
superclasses, 23, 58-59

initializing attributes, 54, 59, 79

Instance() method, 292

instantiating objects, 14, 54

integer addition, 68

Integer class, 296

integrated development environments
(IDEs), 108

interface/implementation paradigm

Java DataBaseReader class example,
41-44

Java Square class example, 21-22
object serialization, 229-230
real-world example, 20

interfaces, 19-20, 40

abstract interfaces, 45-47
class diagrams, 200
compared to implementations, 38-40
designing, 45-47
GUIs, 38
interface/implementation paradigm

Java DataBaseReader class example,
41-44

Java Square class example, 21-22
object serialization, 229-230
real-world example, 20

MailInterface, 297
minimal interfaces, 42, 47
public interface methods, 83
public interfaces, 42-43

identifying, 49-50
relationship with classes, 39
Serializable, 228

Invoice class (SOAP), 267-269

invoking

constructors, 54
methods, 11, 17

IP addresses, loop-back, 275

is-a relationships, 25, 130

iterate() method, 299

iterator design pattern, 298-299

J
Jacobson, Ivar, 194

Java

point-to-point connections, creating,
272-273

client code, 273
loop-back address, 274-275
running the server, 276-277
server code, 275-276

syntax, 77
Java 1.1 Developers Guide, 101, 128

Java 2 Platform Unleashed, 236-237, 300

Java 2 Platform Unleashed, 284

Java Database Connectivity (JDBC), 236

Java Design, 130, 146, 173, 192

Java Distributed Computing, 242, 284

Java Enterprise in a Nutshell, 242, 284

Java Primer Plus, 71, 84, 101

Java serialization model, 233

Javascript, 250

compared to Java, 251
objects, 254-255

Flash, 258
movie players, 257
sound players, 257
web page controls, 255-256

validateNumber() method, 252
Jaworski, Jamie, 101, 128, 236, 242, 270,

284, 300

320 inheritance

JDBC (Java Database Connectivity), 236

Johnson, Johnny, 299-300

K
keywords

catch, 61-63
class, 75
extends, 26
if, 61
new, 54
null, 79
private, 78
static, 78, 81
this, 67
throw, 61-63

Koenig, Andrew, 299

L
languages, 208

HTML, 209
compared to XML, 209-210
tags, 209-210

RecipeML, 208
scripting languages, 247-250
SGML, 209
SmallTalk, 247
XML, 207, 209

and object-oriented languages,
210-211

application-to-application data
transfer, 210-211

comments, 213
compared to HTML, 209-210
CSS, 220-222
data validation, 212-213
document structure, 213

document validity, 213
DTDs, 210-219
horizontal applications, 208
parsers, 211
PCDATA, 213
portable data, 208-209
proprietary solutions, 211
references, 223
vertical applications, 208
XML Notepad, 215-216, 219

Larman, Craig, 194, 205, 300

Lee, Richard, 205

legacy data, 235

avoiding, 43
legacy systems, 5

legal issues, software engineering, 106

LhasaApso class, 131

life cycle, objects, 225-226

loading drivers, 238

local attributes, 64-65, 94

loop-back addresses, 275

M
mail client, 296-297

MailTool class, 296

makeNoise() method, 159

Mammal class, 22-23, 159

mapping objects to relational databases, 43

Math object, 8-9

matrix addition, 69

Mayfield, Mark, 130, 146, 173, 192

McCarty, Bill, 51, 71, 84, 101, 128, 146, 192

memory leaks, 90

messages, sending between objects, 17-18

methodologies (design)

rapid prototyping, 104
waterfall method, 104-105

321methodologies (design)

methods, 11-12, 231

accessor methods, 12
CalculatePay(), 12
calculateSquare(), 22
class diagrams, 197
constructors

calling, 54
default constructors, 54-55
defined, 26, 53
designing, 59-60
multiple constructors, 55-56
return values, 53
structure of, 54
when to provide, 55

createStatement(), 239
defined, 17
executeQuery(), 239-240
executeUpdate(), 239
forName(), 238
get(), 81
getArea(), 26
getCompanyName(), 81
getConnection(), 238
getSocialSecurityNumber(), 12
getSquare(), 22
giveDestination(), 83
invoking, 11, 17
mutator methods, 12
open(), 43-44
overloading, 80

advantages of, 56-57
defined, 56

private, 17, 83-84
protected, 17
public, 17, 19, 41-42, 83
set(), 81

setAge(), 81
shared, 63
signatures, 56
static, 82

Meyers, Scott, 51, 70-71, 88, 101, 132, 146,
173, 192

middleware, 41, 43, 260

minimal interfaces, 42, 47

minus sign (-), 21, 197

modeling classes, 57

models, 109

movie players (JavaScript), 257

multi-tiered systems, 260

multiple constructors, 55-56

multiple counter references, 294

multiple inheritance, 69-70

multiple object associations, 189-190

mutator methods, 12

MVC (Model/View/Controller), 289-290

N
Nameable interface, 158, 162

names, classes, 75, 77

networks, sending data across

OO programming, 10
procedural programming, 9

new keyword, 54

nonproprietary approach to client/server
model, 278

client code, 280-281
executing, 283
object definition code, 278-279
server code, 281-283

null attributes, 79

null keyword, 79

Number class, 65-66

322 methods

O
object attributes, 65-67

object definition code, client/server commu-
nication, creating with XML, 278-279

The Object Primer, 97, 101, 109, 128

object wrappers, 5, 43

Object-Oriented Design in Java, 48, 51, 70-
71, 84, 88, 101, 127-128, 146, 181, 192

object-to-object communication, 8-9

objects

assigning, 70-71
attributes, 10-11, 65-67

accessing, 81-83
defined, 10
initializing, 54, 59
protecting, 81

behaviors, 11-14, 48
compared to classes, 15, 17
composition, 28-30

class diagrams, 201
copying, 70-71
creating, 16
defined, 6-10
environmental constraints, 48
instantiating, 14, 54
JavaScript, 254-256

Flash, 258
movie players, 257
sound players, 257

life cycle, 225-226
mapping to relational databases, 43
Math, 8-9
object variables, accessing, 66
object wrappers, 5, 43
object-to-object communication, 8-9
Payroll, 12

persistent objects, 43, 225
object life cycle, 225-226
relational databases, 234-241
serialization, 227-229

referencing, 78-79
saving

to flat files, 227
to relational databases, 234-237

sending messages between, 17-18
serialization, 227-229

example, 227-229
interface/implementation

paradigm, 229-230
SOAP, 263-267

Invoice class, 267-269
Web objects, 10
wrappers, 261

ODBC (Open Database Connectivity), 236

OO paradigm, 38

OO programming, 5-6, 37-38

abstraction, 29
accuracy versus complexity, 134
advantages of, 10, 132, 181-183
aggregation, 183-186
association, 183-185, 189-191
attributes, 63-64

accessing, 81-83
class attributes, 17, 67, 77-79
class diagrams, 196
initializing, 54, 59, 79
local attributes, 64-65
null attributes, 79
object attributes, 10, 65-67
private attributes, 19
protecting, 81
sharing, 65, 67
static attributes, 67
testing for null, 79

323OO programming

cardinality, 186-188
classes, 14, 75, 87-88

accessors, 80-83
as object templates, 15, 17
attributes, 17-19, 67, 77-79
Cabbie, 49, 53
Cat, 23
Circle, 26
class diagrams, 13-14, 18, 21, 109
code recompilation, 44
comments, 77
compared to objects, 15-17
constructors, 79-80
Count, 55
creating instances of, 54
DataBaseReader, 41-42, 57-58
defined, 14-15
designing, 8
Dog, 23
GermanShepherd, 23
implementations, 38-40
inheritance, 22-25, 58-59, 69-70
interfaces, 38-40
Mammal, 22-23
messages, 17-18
methods, 17, 83-84
names, 75-77
Number, 65-66
Person, 16-18
Poodle, 23
Rectangle, 27
reusable classes, 45-47
scope, 64
Shape, 25-28
Square, 21-22
subclasses, 23
superclasses, 23, 58-59

combining with aggregation, 185
compared to procedural

programming, 6-10
composition, 28-29, 135-136, 179

defined, 30
has-a relationships, 29

compounds, 136
constructors, 79-80, 89-90

calling, 54
default constructors, 54-55
defined, 26, 53
designing, 59-60
multiple constructors, 55-56
return values, 53
structure of, 54
when to provide, 55

data hiding, 8
defined, 129-130, 138
dependency, avoiding, 186
design issues, 134-135
destructors, 90
effect of inheritance on, 139-141
encapsulation, 19, 138

defined, 8, 29
implementations, 20, 38-40, 50
interface/implementation

paradigm, 20-22, 41-44
interfaces, 19-20, 38-50

error handling, 60, 90-91
aborting applications, 60
bulletproof code, 63
combining error-handing

techniques, 61
exceptions, 61-63
ignoring errors, 60
recovery, 61
throwing exceptions, 62-63

324 OO programming

example of, 141, 191
extensibility, 92-96
generalization-specialization, 133
GoldenRetriever class example, 131
has-a relationships, 129, 179-181
highly coupled classes, 97
implementations, 89
improper use of, 140
inheritance, 22-25, 129-133

abstraction, 23-24
advantages of, 23
behavioral inheritance, 70
defined, 29
implementation inheritance, 70
inheritance trees, 23
is-a relationships, 25
multiple inheritance, 69-70
subclasses, 23
superclasses, 23, 58-59

maintainability, 96-99
methods, 11-12, 81

accessor methods, 12
CalculatePay(), 12
calculateSquare(), 22
class diagrams, 197
defined, 17
getArea(), 26
getSocialSecurityNumber(), 12
getSquare(), 22
invoking, 11, 17
mutator methods, 12
overloading, 56-57, 80
private methods, 17, 83-84
protected methods, 17
public methods, 17-19, 41-42, 83
shared methods, 63
signatures, 56

multiple object associations, 189
object persistence, 99-100
object responsibility, 141-145
objects

assigning, 70-71
attributes, 10-11, 65-67
behaviors, 11-14, 48
compared to classes, 15-17
copying, 70-71
creating, 16
defined, 6-10
environmental constraints, 48
instantiating, 14, 54
life cycle, 225-226
mapping to relational databases, 43
Math, 8-9
object wrappers, 43
object-to-object communication,

8-9
Payroll, 12
persistence, 43, 225-229, 234-241
referencing, 78-79
saving to flat files, 227
saving to relational databases,

234-235
sending messages between, 17-18
serialization, 227-229

OO paradigm, 38
operators, overloading, 68-69
optional associations, 190
polymorphism, 25-29
problems with, 132
public interfaces, 88-89
real-world example, 135-136
reusability, 91
serializing, 100
static methods, 82

325OO programming

stubs, 97, 99
UML notation, 136-137

open() method, 43-44

operations

assigning objects, 70-71
copying objects, 70-71

bitwise copies, 70
deep copies, 70
shallow copies, 70
valid copies, 70

operators, overloading, 68-69

optional associations, 190-191

Oracle databases, reading with
DataBaseReader, 41

class diagram, 42, 57-58
overloading

methods, 80
operators, 68-69

overloading methods

advantages of, 56-57
defined, 56

P-Q
parent classes (superclasses), 23, 58-59

parse character data (PCDATA), 213

parsers, 211

passing references, 79

pattern names, 288

pay, calculating, 12

Payroll object, 12

PCDATA (parse character data), 213

persistence

defined, 225
objects, 43

persistent objects, 225

object life cycle, 225-226

relational databases
accessing, 236-237
database connections, 238-239
drivers, 238-239
JDBC, 236-237
ODBC, 236
SQL statements, 239-241
writing to, 234-235

saving
to flat files, 227
to relational databases, 234-235

serialization, 227-229
example, 227-229
interface/implementation

paradigm, 229-230
Person class, 16-17, 227

attributes, 17
class diagram, 18
methods, 17

PizzaShop class, 170

Player class, 119

plus sign (+), 21, 68, 197

point-to-point connections

creating in Java, 272
client code, 273
loop-back address, 274
running the server, 276-277
server code, 275-276
virtual port, 275

pointers, comparing, 70

polymorphism, 25-29

Poodle class, 23

portable data, 207-209

Practical Object-Oriented Development
with UML and Java, 205

private attributes, 78

private keyword, 78

326 OO programming

procedural programming

compared to OO programming, 6-10
sending data across networks, 9-10

proprietary approach to client/server model,
272

client code, 273-275
serialized object code, 272-273
server code, 275-276
server, running, 276-277

proprietary solutions, 211

protected access, 198

protecting attributes, 81

prototyping, 108

blackjack case study, 127
rapid prototyping, 104

public interfaces, 42-43

identifying, 49-50
public methods, 41-42

queries (SQL), 239-241

R
rapid prototyping, 104

RecipeML (Recipe Markup Language), 208

recompiling code, 44

recovery, 61

Rectangle class, 27

references

copying, 70
multiple, 293-294
passing, 78-79
uninitialized references, 80

relational databases

accessing, 236-237
database connections, 238-239

drivers
documentation, 239
loading, 238

JDBC, 236-237
legacy data, 235
ODBC, 236
SQL statements, 239-241
writing to, 234-235

relational-to-object mapping, 43

relationships

has-a, 29
class diagrams, 201

is-a, 25
removing items from stack, 28

requests for proposals (RFPs), 107

requirements document, 107-108

blackjack case study, 110-111
ResultSet class, 240

retrieveMail() method, 297

return values, constructors, 53

reusable classes, 45-47

Reuse Patterns and Antipatterns, 300

Reuseless Artifacts, 300

RFPs (requests for proposals), 107

Robust Artifacts, 300

routing, ORBs, 263

RPCs (remote procedure calls), 263

Rumbaugh, James, 194

S
safety versus economics, 105

SavePerson class, 228-230

saving objects

to flat files, 227
to relational databases, 234-235

327saving objects

scope, 63-64

class attributes, 67
classes, 64
local attributes, 64-65
object attributes, 65-67

sending

data across networks
OO programming, 10
procedural programming, 9

messages between objects, 17-18
Serializable interface, 100, 228

serialization, 227-229

example, 227-229
interface/implementation paradigm,

229-230
XML, 231-234

server code

client/server communication, creating
with XML, 281-283

point-to-point connections, creating
in Java, 275-276

set() method, 81

setAge() method, 81

setName() method, 158

setSize() method, 159

setters, 12, 232

SGML (Standard Generalized Markup
Language), 209

shallow copies, 70

Shape class, 25-28

shared methods, 63

sharing attributes, 65-67

Shop class, 168-169

signatures (methods), 56

Simon, Herbert, 181

singletone design pattern, 291-295

slash-asterisk (/*...*/) comment notation, 77

slash-asterisk-asterisk (/**...*/) comment

notation, 77

slash-slash (//) comment notation, 77

Smalltalk, 289

MVC, 289-290
SOAP (Simple Object Access Protocol),

263-264, 266-267

Invoice class, 267-269
software, 48

software analysis, 107

Software by Committee, 128

software testing, 105-106

sound players (JavaScript), 257

SQL statements, 236, 239-241

Square class, 21-22

squares of numbers, calculating, 19

stable systems, 181

stacks, 28

standalone applications, 43

standardization, 152

statement of work, 107

blackjack case study, 109
statements (SQL), 239-241

static attributes, 67, 78, 81-82, 92

static keyword, 78, 81, 92

static methods, 82, 92

strings

concatenating, 68
delineating, 239

structural design patterns, 295

adapter design pattern, 296-298
structural patterns, 291, 296

style sheets, CSS, 220-222

subclasses, 23

Sun Microsystems website, 242, 284

superclasses, 23, 58-59

syntax (Java), 77

328 scope

system design

blackjack case study, 109
Bet class, 119-120
Card class, 117
class design, 112-114
class responsibilities, 115-117
collaboration diagrams, 121-123
CRC cards, 111-112, 124-125
Dealer class, 118
Deck class, 117-118
Hand class, 118
Player class, 119
requirements document, 110-111
statement of work, 109
UML class diagrams, 126-127
UML use-cases, 120-121
user interface prototype, 127

classes
class diagrams, 109
determining responsibilities of, 108
identifying, 108
interaction with other classes, 109

design guidelines, 104-107
design process, 104
prototypes, 108

blackjack case study, 127
rapid prototyping, 104
requirements document, 107-108
RFP (request-for proposal), 107
safety versus economics, 105
software analysis, 107
software testing, 105

beta testing, 106
legal issues, 106

statement of work, 107
waterfall method, 104-105

systems, building independently, 181

T
tags (HTML), 209-210

Teach Yourself XML in 10 Minutes, 223

Tepfenhart, William, 205

testing

code, 132
for null attributes, 79
software, 105-106

this keyword, 67

throw keyword, 61-63

throwing exceptions, 61-63

tools, XML Notepad, 215-216, 219

top-down design, 87

Torok, Gabriel, 71, 84, 101

try/catch blocks, 61-63

Tyma, Paul, 71, 84, 101

U
UML (Unified Modeling Language), 14, 104,

193

access designations, 197
aggregations, 201
associations, 201-202
cardinality, 204
class diagrams, 13-14, 18, 109

attributes, 196
blackjack case study, 126-127
Cabbie class, 194-196
creating, 57-58
DataBaseReader class, 42, 57-58
methods, 197
minus sign (-), 21
plus sign (+), 21
structure of, 194-196

composition, 201
defined, 193-194
history of, 194
inheritance, 198-199

329UML (Unified Modeling Language)

interfaces, 200
UML User Guide, 193
use-case scenarios, 120-121

UML Distilled, 51, 84, 205

UML User Guide, 193

uninitialized references, 80

updates (SQL), 239-241

use-case scenarios, 120-121

users

defined, 39
identifying, 40, 48

V
valid copies, 70

validateNumber() method, 252

validating XML documents, 212-213

variables, accessing, 66

vertical applications, 208

virtual port, specifying for point-to-point
connection, 275

vocabulary, 208

W
waterfall design method, 104-105

web applications, rendering HTML
documents, 249

Web objects, 10

web page controls (JavaScript), 255-256

web services, 263

SOAP, 264-267
Invoice class, 267-269

The Web Wizard’s Guide to XML, 223

websites

OMG (Object Management Group),
260

Sun Microsystems, 242
Weisfeld, Matt, 128

word processing framework, 153

work statement, 107

wrappers (object), 5, 43, 261

X-Y-Z
XML (Extensible Markup Language),

207-209

application-to-application data
transfer, 210-211

and object-oriented languages,
210-211

client/server communication, creating,
278

client code, 280-281
object definition code, 278-279
server code, 281-283

comments, 213
compared to HTML, 209-210
CSS, 220-222
data validation, 212-213
document structure, 213
document validity, 213
DTDs, 210

data validation, 212-213
integrating into XML document,

213-219
horizontal applications, 208
parsers, 211
PCDATA, 213
portable data, 208-209
proprietary solutions, 211
RecipeML, 208
references, 223
serialization, 231-234
vertical applications, 208
XML Notepad, 215-216, 219

XML: How to Program, 223

XML Notepad, 215-216, 219

XML: Web Warrior Series, 223

330 UML Distilled

	The Object-Oriented Thought Process, Third Edition
	Table of Contents
	Introduction
	1 Introduction to Object-Oriented Concepts
	Procedural Versus OO Programming
	Moving from Procedural to Object-Oriented Development
	Procedural Programming
	OO Programming

	What Exactly Is an Object?
	Object Data
	Object Behaviors

	What Exactly Is a Class?
	Classes Are Object Templates
	Attributes
	Methods
	Messages

	Using UML to Model a Class Diagram
	Encapsulation and Data Hiding
	Interfaces
	Implementations
	A Real-World Example of the Interface/Implementation Paradigm
	A Model of the Interface/Implementation Paradigm

	Inheritance
	Superclasses and Subclasses
	Abstraction
	Is-a Relationships

	Polymorphism
	Composition
	Abstraction
	Has-a Relationships

	Conclusion
	Example Code Used in This Chapter

	2 How to Think in Terms of Objects
	Knowing the Difference Between the Interface and the Implementation
	The Interface
	The Implementation
	An Interface/Implementation Example

	Using Abstract Thinking When Designing Interfaces
	Giving the User the Minimal Interface Possible
	Determining the Users
	Object Behavior
	Environmental Constraints
	Identifying the Public Interfaces
	Identifying the Implementation

	Conclusion
	References

	3 Advanced Object-Oriented Concepts
	Constructors
	The Default Constructor
	When Is a Constructor Called?
	What’s Inside a Constructor?
	The Default Constructor
	Using Multiple Constructors
	The Design of Constructors

	Error Handling
	Ignoring the Problem
	Checking for Problems and Aborting the Application
	Checking for Problems and Attempting to Recover
	Throwing an Exception

	The Concept of Scope
	Local Attributes
	Object Attributes
	Class Attributes

	Operator Overloading
	Multiple Inheritance
	Object Operations
	Conclusion
	References
	Example Code Used in This Chapter

	4 The Anatomy of a Class
	The Name of the Class
	Comments
	Attributes
	Constructors
	Accessors
	Public Interface Methods
	Private Implementation Methods
	Conclusion
	References
	Example Code Used in This Chapter

	5 Class Design Guidelines
	Modeling Real World Systems
	Identifying the Public Interfaces
	The Minimum Public Interface
	Hiding the Implementation

	Designing Robust Constructors (and Perhaps Destructors)
	Designing Error Handling into a Class
	Documenting a Class and Using Comments
	Building Objects with the Intent to Cooperate

	Designing with Reuse in Mind
	Documenting a Class and Using Comments

	Designing with Extensibility in Mind
	Making Names Descriptive
	Abstracting Out Nonportable Code
	Providing a Way to Copy and Compare Objects
	Keeping the Scope as Small as Possible
	A Class Should Be Responsible for Itself

	Designing with Maintainability in Mind
	Using Iteration
	Testing the Interface

	Using Object Persistence
	Serializing and Marshaling Objects

	Conclusion
	References
	Example Code Used in This Chapter

	6 Designing with Objects
	Design Guidelines
	Performing the Proper Analysis
	Developing a Statement of Work
	Gathering the Requirements
	Developing a Prototype of the User Interface
	Identifying the Classes
	Determining the Responsibilities of Each Class
	Determining How the Classes Collaborate with Each Other
	Creating a Class Model to Describe the System

	Case Study: A Blackjack Example
	Using CRC Cards
	Identifying the Blackjack Classes
	Identifying the Classes’ Responsibilities
	UML Use-Cases: Identifying the Collaborations
	First Pass at CRC Cards
	UML Class Diagrams: The Object Model
	Prototyping the User Interface

	Conclusion
	References

	7 Mastering Inheritance and Composition
	Reusing Objects
	Inheritance
	Generalization and Specialization
	Design Decisions

	Composition
	Representing Composition with UML

	Why Encapsulation Is Fundamental to OO
	How Inheritance Weakens Encapsulation
	A Detailed Example of Polymorphism
	Object Responsibility

	Conclusion
	References
	Example Code Used in This Chapter

	8 Frameworks and Reuse: Designing with Interfaces and Abstract Classes
	Code: To Reuse or Not to Reuse?
	What Is a Framework?
	What Is a Contract?
	Abstract Classes
	Interfaces
	Tying It All Together
	The Compiler Proof
	Making a Contract
	System Plug-in-Points

	An E-Business Example
	An E-Business Problem
	The Non-Reuse Approach
	An E-Business Solution
	The UML Object Model

	Conclusion
	References
	Example Code Used in This Chapter

	9 Building Objects
	Composition Relationships
	Building in Phases
	Types of Composition
	Aggregations
	Associations
	Using Associations and Aggregations Together

	Avoiding Dependencies
	Cardinality
	Multiple Object Associations
	Optional Associations

	Tying It All Together: An Example
	Conclusion
	References

	10 Creating Object Models with UML
	What Is UML?
	The Structure of a Class Diagram
	Attributes and Methods
	Attributes
	Methods

	Access Designations
	Inheritance
	Interfaces
	Composition
	Aggregations
	Associations

	Cardinality
	Conclusion
	References

	11 Objects and Portable Data: XML
	Portable Data
	The Extensible Markup Language (XML)
	XML Versus HTML
	XML and Object-Oriented Languages
	Sharing Data Between Two Companies
	Validating the Document with the Document Type Definition (DTD)
	Integrating the DTD into the XML Document
	Using Cascading Style Sheets
	Conclusion
	References

	12 Persistent Objects: Serialization and Relational Databases
	Persistent Objects Basics
	Saving the Object to a Flat File
	Serializing a File
	Implementation and Interface Revisited
	What About the Methods?

	Using XML in the Serialization Process
	Writing to a Relational Database
	Accessing a Relational Database

	Loading the Driver
	Making the Connection
	The SQL Statements

	Conclusion
	References
	Example Code Used in This Chapter

	13 Objects and the Internet
	Evolution of Distributed Computing
	Object-Based Scripting Languages
	A JavaScript Validation Example
	Objects in a Web Page
	JavaScript Objects
	Web Page Controls
	Sound Players
	Movie Players
	Flash

	Distributed Objects and the Enterprise
	The Common Object Request Broker Architecture (CORBA)
	Web Services Definition
	Web Services Code
	Invoice.cs
	Invoice.vb

	Conclusion
	References

	14 Objects and Client/Server Applications
	Client/Server Approaches
	Proprietary Approach
	Serialized Object Code
	Client Code
	Server Code
	Running the Proprietary Client/Server Example

	Nonproprietary Approach
	Object Definition Code
	Client Code
	Server Code
	Running the Nonproprietary Client/Server Example

	Conclusion
	References
	Example Code Used in This Chapter

	15 Design Patterns
	Why Design Patterns?
	Smalltalk’s Model/View/Controller
	Types of Design Patterns
	Creational Patterns
	Structural Patterns
	Behavioral Patterns

	Antipatterns
	Conclusion
	References
	Example Code Used in This Chapter

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P-Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

